Small area analysis using micro-diffraction techniques [electronic resource]

An overall trend toward smaller electronic packages and devices makes it increasingly important and difficult to obtain meaningful diffraction information from small areas. X-ray micro-diffraction, electron back-scattered diffraction (EBSD) and Kossel are micro-diffraction techniques used for crysta...

Full description

Saved in:
Bibliographic Details
Online Access: Online Access
Corporate Author: Sandia National Laboratories (Researcher)
Format: Government Document Electronic eBook
Language:English
Published: Washington, D.C : Oak Ridge, Tenn. : United States. Dept. of Energy ; distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2000.
Subjects:
Description
Summary:An overall trend toward smaller electronic packages and devices makes it increasingly important and difficult to obtain meaningful diffraction information from small areas. X-ray micro-diffraction, electron back-scattered diffraction (EBSD) and Kossel are micro-diffraction techniques used for crystallographic analysis including texture, phase identification and strain measurements. X-ray micro-diffraction primarily is used for phase analysis and residual strain measurements. X-ray micro-diffraction primarily is used for phase analysis and residual strain measurements of areas between 10 μm to 100 μm. For areas this small glass capillary optics are used for producing a usable collimated x-ray beam. These optics are designed to reflect x-rays below the critical angle therefore allowing for larger solid acceptance angle at the x-ray source resulting in brighter smaller x-ray beams. The determination of residual strain using micro-diffraction techniques is very important to the semiconductor industry. Residual stresses have caused voiding of the interconnect metal which then destroys electrical continuity. Being able to determine the residual stress helps industry to predict failures from the aging effects of interconnects due to this stress voiding. Stress measurements would be impossible using a conventional x-ray diffractometer; however, utilizing a 30μm glass capillary these small areas are readily assessable for analysis. Kossel produces a wide angle diffraction pattern from fluorescent x-rays generated in the sample by an e-beam in a SEM. This technique can yield very precise lattice parameters for determining strain. Fig. 2 shows a Kossel pattern from a Ni specimen. Phase analysis on small areas is also possible using an energy dispersive spectrometer (EBSD) and x-ray micro-diffraction techniques. EBSD has the advantage of allowing the user to observe the area of interest using the excellent imaging capabilities of the SEM. An EDS detector has been used for simultaneous element identification which enhances phase identification of unknowns. The x-ray area detector also allows for rapid microstructure information including crystallite orientation and size by directly observing the diffraction rings. These techniques allow for small area analysis that in the past would have been difficult if not impossible to obtain. The future development in x-ray optics and the use of synchrotron sources will allow for the potential of nondestructive submicron x-ray diffraction analysis.
Item Description:Published through the Information Bridge: DOE Scientific and Technical Information.
02/11/2000.
"sand2000-0407c"
The 2nd Meeting of the International Union of Microbeam Analysis Societies, Kailua-Kona, HI (US), 07/08/2000--07/13/2000.
MICHAEL,JOSEPH R.; GOEHNER,RAYMOND P.; TISSOT JR.,RALPH G.
Physical Description:2 pages : digital, PDF file.