CMOS integrated lab-on-a-chip system for personalized biomedical diagnosis / Hao Yu, Southern University of Science and Technology, China, Mei Yan, Consultant, China, Xiwei Huang, Hangzhou Dianzi University, China.
A thorough examination of lab-on-a-chip circuit-level operations to improve system performance A rapidly aging population demands rapid, cost-effective, flexible, personalized diagnostics. Existing systems tend to fall short in one or more capacities, making the development of alternatives a priorit...
Saved in:
Online Access: |
Full Text (via IEEE) |
---|---|
Main Author: | |
Format: | Electronic eBook |
Language: | English |
Published: |
Hoboken, NJ :
Wiley / IEEE Press,
2018.
|
Series: | Wiley - IEEE.
|
Subjects: |
Table of Contents:
- Intro; Title Page; Copyright Page; Contents; Preface; Chapter 1 Introduction; 1.1 Personalized Biomedical Diagnosis; 1.1.1 Personalized Diagnosis; 1.1.2 Conventional Biomedical Diagnostic Instruments; 1.1.2.1 Optical Microscope; 1.1.2.2 Flow Cytometer; 1.1.2.3 DNA Sequencer; 1.2 CMOS Sensor-based Lab-on-a-Chip for System Miniaturization; 1.2.1 CMOS Sensor-based Lab-on-a-Chip; 1.2.2 CMOS Sensor; 1.2.2.1 CMOS Process Fundamentals; 1.2.2.2 CMOS Sensor Technology; 1.2.2.3 Multimodal CMOS Sensor; 1.2.3 Microfluidics; 1.2.3.1 Microfluidic Fundamentals; 1.2.3.2 Microfluidics Fabrication.
- 1.3 Objectives and Organization of this Book1.3.1 Objectives; 1.3.2 Organization; References; Chapter 2 CMOS Sensor Design; 2.1 Top Architecture; 2.2 Noise Overview; 2.2.1 Thermal Noise; 2.2.2 Flicker Noise; 2.2.3 Shot Noise; 2.2.4 MOSFET Noise Model; 2.3 Pixel Readout Circuit; 2.3.1 Source Follower; 2.3.2 Sub-threshold Gm Integrator; 2.3.3 CTIA; 2.4 Column Amplifier; 2.5 Column ADC; 2.5.1 Single-Slope ADC; 2.5.2 Sigma-Delta ADC; 2.6 Correlated Sampling; 2.6.1 Correlated Double Sampling; 2.6.2 Correlated Multiple Sampling; 2.7 Timing Control; 2.7.1 Row Timing Control.
- 2.7.2 Column Timing Control2.8 LVDS Interface; References; Chapter 3 CMOS Impedance Sensor; 3.1 Introduction; 3.2 CMOS Impedance Pixel; 3.3 Readout Circuit; 3.4 A 96 × 96 Electronic Impedance Sensing System; 3.4.1 Top Architecture; 3.4.2 System Implementation; 3.4.2.1 System Setup; 3.4.2.2 Sample Preparation; 3.4.3 Results; 3.4.3.1 Data Fitting for Single Cell Impedance Measurement; 3.4.3.2 Cell and Electrode Impedance Analysis; 3.4.3.3 EIS for Single-Cell Impedance Enumeration; References; Chapter 4 CMOS Terahertz Sensor; 4.1 Introduction; 4.2 CMOS THz Pixel.
- 4.2.1 Differential TL-SRR Resonator Design4.2.1.1 Stacked SRR Layout; 4.2.1.2 Comparison with Single-ended TL-SRR Resonator; 4.2.1.3 Comparison with Standing-Wave Resonator; 4.2.2 Differential TL-CSRR Resonator Design; 4.3 Readout Circuit; 4.3.1 Super-regenerative Amplification; 4.3.1.1 Equivalent Circuit of SRA; 4.3.1.2 Frequency Response of SRA; 4.3.1.3 Sensitivity of SRA; 4.3.2 Super-regenerative Receivers; 4.3.2.1 Quench-controlled Oscillation; 4.3.2.2 SRX Design by TL-CSRR; 4.3.2.3 SRX Design by TL-SRR; 4.4 A 135 GHz Imager; 4.4.1 135 GHz DTL-SRR-based Receiver.
- 4.4.2 System Implementation4.4.3 Results; 4.5 Plasmonic Sensor for Circulating Tumor Cell Detection; 4.5.1 Introduction of CTC Detection; 4.5.2 SRR-based Oscillator for CTC Detection; 4.5.3 Sensitivity of SRR-based Oscillator; References; Chapter 5 CMOS Ultrasound Sensor; 5.1 Introduction; 5.2 CMUT Pixel; 5.3 Readout Circuit; 5.4 A 320 × 320 CMUT-based Ultrasound Imaging System; 5.4.1 Top Architecture; 5.4.2 System Implementation; 5.4.2.1 Process Selection; 5.4.2.2 High Voltage Pulser; 5.4.2.3 Low-Noise Preamplifier and High Voltage Switch; 5.4.3 Results; 5.4.3.1 Simulation Results.