Privacy-preserving machine learning / Morris Chang, Dumindu Samaraweera, Di Zhuang.

Keep sensitive user data safe and secure without sacrificing the performance and accuracy of your machine learning models. In Privacy Preserving Machine Learning, you will learn: Privacy considerations in machine learning Differential privacy techniques for machine learning Privacy-preserving synthe...

Full description

Saved in:
Bibliographic Details
Online Access: Streaming Audio (via O'Reilly/Safari)
Main Authors: Chang, Morris (Author), Samaraweera, Dumindu (Author), Zhuang, Di (Author)
Format: Electronic Audio
Language:English
Published: [Place of publication not identified] : Manning Publications, 2023.
Edition:[First edition].
Subjects:

MARC

LEADER 00000cim a22000007i 4500
001 in00000123439
006 m o h
007 sr |||||||||||
007 cr |||||||||||
008 231025s2023 xx nnnn o z n eng d
005 20240829142008.2
019 |a 1402236574 
024 8 |a 9781617298042AU 
035 |a (OCoLC)safo1405921999 
035 |a (OCoLC)1405921999  |z (OCoLC)1402236574 
037 |a safo9781617298042AU 
040 |a ORMDA  |b eng  |e rda  |e pn  |c ORMDA  |d OCLKB  |d TXM  |d LANGC  |d OCLCO  |d OCLCF 
049 |a GWRE 
050 4 |a Q325.5 
100 1 |a Chang, Morris,  |e author. 
245 1 0 |a Privacy-preserving machine learning /  |c Morris Chang, Dumindu Samaraweera, Di Zhuang. 
250 |a [First edition]. 
264 1 |a [Place of publication not identified] :  |b Manning Publications,  |c 2023. 
300 |a 1 online resource (1 sound file (9 hr., 29 min.)) 
306 |a 092900 
336 |a spoken word  |b spw  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
344 |a digital  |2 rdatr 
347 |a audio file  |2 rdaft 
520 |a Keep sensitive user data safe and secure without sacrificing the performance and accuracy of your machine learning models. In Privacy Preserving Machine Learning, you will learn: Privacy considerations in machine learning Differential privacy techniques for machine learning Privacy-preserving synthetic data generation Privacy-enhancing technologies for data mining and database applications Compressive privacy for machine learning Privacy Preserving Machine Learning is a comprehensive guide to avoiding data breaches in your machine learning projects. You'll get to grips with modern privacy-enhancing techniques such as differential privacy, compressive privacy, and synthetic data generation. Based on years of DARPA-funded cybersecurity research, ML engineers of all skill levels will benefit from incorporating these privacy-preserving practices into their model development. By the time you're done reading, you'll be able to create machine learning systems that preserve user privacy without sacrificing data quality and model performance. About the Technology Machine learning applications need massive amounts of data. It's up to you to keep the sensitive information in those data sets private and secure. Privacy preservation happens at every point in the ML process, from data collection and ingestion to model development and deployment. This practical book teaches you the skills you'll need to secure your data pipelines end to end. About the Book Privacy Preserving Machine Learning explores privacy preservation techniques through real-world use cases in facial recognition, cloud data storage, and more. You'll learn about practical implementations you can deploy now, future privacy challenges, and how to adapt existing technologies to your needs. Your new skills build towards a complete security data platform project you'll develop in the final chapter. What's Inside Differential and compressive privacy techniques Privacy for frequency or mean estimation, naive Bayes classifier, and deep learning Privacy-preserving synthetic data generation Enhanced privacy for data mining and database applications About the Reader For machine learning engineers and developers. Examples in Python and Java. About the Authors J. Morris Chang is a professor at the University of South Florida. His research projects have been funded by DARPA and the DoD. Di Zhuang is a security engineer at Snap Inc. G. Dumindu Samaraweera is an assistant research professor at the University of South Florida. The technical editor for this book, Wilko Henecka, is a senior software engineer at Ambiata where he builds privacy-preserving software. Quotes A detailed treatment of differential privacy, synthetic data generation, and privacy-preserving machine-learning techniques with relevant Python examples. Highly recommended! - Abe Taha, Google A wonderful synthesis of theoretical and practical. This book fills a real need. - Stephen Oates, Allianz The definitive source for creating privacy-respecting machine learning systems. This area in data-rich environments is so important to understand! - Mac Chambers, Roy Hobbs Diamond Enterprises Covers all aspects for data privacy, with good practical examples. - Vidhya Vinay, Streamingo Solutions. 
588 |a Online resource; title from title details screen (O'Reilly, viewed October 25, 2023). 
650 0 |a Machine learning. 
650 0 |a Computer networks  |x Security measures. 
650 7 |a Computer networks  |x Security measures.  |2 fast  |0 (OCoLC)fst00872341 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
655 7 |a Audiobooks.  |2 fast  |0 (OCoLC)fst01726208 
700 1 |a Samaraweera, Dumindu,  |e author. 
700 1 |a Zhuang, Di,  |e author. 
856 4 0 |u https://go.oreilly.com/UniOfColoradoBoulder/library/view/~/9781617298042AU/?ar  |z Streaming Audio (via O'Reilly/Safari) 
915 |a 7 
956 |a O'Reilly-Safari eBooks 
956 |b O'Reilly Online Learning: Academic/Public Library Edition 
994 |a 92  |b COD 
998 |b Subsequent record output 
999 f f |s 2dcbbbac-53ca-4eb3-9dd1-6de3099ede14  |i 13fbab28-5727-44d1-a4fb-268473c73968 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e Q325.5   |h Library of Congress classification  |i web