Analyzing the 2016 Republican primary using a Tobit model / Michael Lee.

Sometimes political scientists analyze data where distinctions between data points are unobservable above or below a critical limit. In this case study, we will examine how to address the problems related to this kind of data (broadly known as censored data). The reader will be taken through an exam...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via SAGE)
Main Author: Lee, Michael, active 2018 (Author)
Format: Electronic eBook
Language:English
Published: London : SAGE Publications Ltd, 2019.
Series:SAGE Research Methods. Cases.
Subjects:

MARC

LEADER 00000cam a2200000Mi 4500
001 in00000109024
006 m o d
007 cr |||||||||||
008 190103s2019 enka fob 000 0 eng d
005 20231207225216.1
035 |a (OCoLC)srm1084517981 
037 |a srm/analyzing-the-2016-republican-primary-using-a-tobit-model 
040 |a SGPBL  |b eng  |e rda  |e pn  |c SGPBL  |d OCLCO  |d OCLCF  |d OCLCO 
020 |a 9781526476869  |q (ebook) 
020 |a 152647686X 
029 1 |a AU@  |b 000065928723 
035 |a (OCoLC)1084517981 
043 |a n-us--- 
050 4 |a JK2071  |b .L44 2019 
049 |a GWRE 
100 1 |a Lee, Michael,  |d active 2018,  |e author. 
245 1 0 |a Analyzing the 2016 Republican primary using a Tobit model /  |c Michael Lee. 
264 1 |a London :  |b SAGE Publications Ltd,  |c 2019. 
300 |a 1 online resource :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a SAGE Research Methods. Cases 
504 |a Includes bibliographical references and index. 
520 8 |a Sometimes political scientists analyze data where distinctions between data points are unobservable above or below a critical limit. In this case study, we will examine how to address the problems related to this kind of data (broadly known as censored data). The reader will be taken through an example of data that (sometimes) exhibit these featureśfeeling thermometers toward candidates in the 2016 U.S. Presidential Election. Particular attention will be paid to the use of Tobit models as a potential solution to censored data. 
588 |a Description based on XML content. 
650 0 |a Primaries  |z United States. 
650 0 |a Tobits. 
650 0 |a Regression analysis. 
650 7 |a Primaries.  |2 fast  |0 (OCoLC)fst01076313 
650 7 |a Regression analysis.  |2 fast  |0 (OCoLC)fst01432090 
650 7 |a Tobits.  |2 fast  |0 (OCoLC)fst01152027 
651 7 |a United States.  |2 fast  |0 (OCoLC)fst01204155 
830 0 |a SAGE Research Methods. Cases. 
856 4 0 |u https://colorado.idm.oclc.org/login?url=https://methods.sagepub.com/case/analyzing-the-2016-republican-primary-using-a-tobit-model  |z Full Text (via SAGE) 
915 |a M 
956 |a Sage Research Methods 
956 |b SAGE Research Methods Cases Part2 
998 |b New collection SAGE.casesrm2 
994 |a 92  |b COD 
999 f f |s d8235e91-62b9-4b5d-a78c-1f1ff0b8e79d  |i a8af8e71-cd82-48f2-9625-1651a61ec5c8 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e JK2071 .L44 2019  |h Library of Congress classification  |i web