Introduction to environmental data science / William W. Hsieh.

"Statistical and machine learning methods have many applications in the environmental sciences, including prediction and data analysis in meteorology, hydrology and oceanography; pattern recognition for satellite images from remote sensing; management of agriculture and forests; assessment of c...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via Cambridge)
Main Author: Hsieh, William Wei, 1955- (Author)
Format: Electronic eBook
Language:English
Published: Cambridge ; New York : Cambridge University Press, 2023.
Subjects:

MARC

LEADER 00000cam a22000007i 4500
001 in00000071679
006 m o d
007 cr |||||||||||
008 230330s2023 nyua ob 001 0 eng d
005 20230831182104.6
035 |a (OCoLC)ceba1374251981 
037 |a ceba9781107588493 
040 |a NOC  |e rda  |b eng  |c NOC  |d CAMBR 
020 |z 9781107065550  |q (hardback) 
020 |z 1107065550  |q (hardback) 
020 |a 9781107588493  |q (electronic book) 
020 |a 1107588499  |q (electronic book) 
029 1 |a AU@  |b 000074185972 
035 |a (OCoLC)1374251981 
050 4 |a GE45.D37  |b H74 2023 
049 |a GWRE 
100 1 |a Hsieh, William Wei,  |d 1955-  |e author. 
245 1 0 |a Introduction to environmental data science /  |c William W. Hsieh. 
264 1 |a Cambridge ;  |a New York :  |b Cambridge University Press,  |c 2023. 
300 |a 1 online resource (xx, 625 pages) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
520 |a "Statistical and machine learning methods have many applications in the environmental sciences, including prediction and data analysis in meteorology, hydrology and oceanography; pattern recognition for satellite images from remote sensing; management of agriculture and forests; assessment of climate change; and much more. With rapid advances in machine learning in the last decade, this book provides an urgently needed, comprehensive guide to machine learning and statistics for students and researchers interested in environmental data science. It includes intuitive explanations covering the relevant background mathematics, with examples drawn from the environmental sciences. A broad range of topics are covered, including correlation, regression, classification, clustering, neural networks, random forests, boosting, kernel methods, evolutionary algorithms and deep learning, as well as the recent merging of machine learning and physics. End-of-chapter exercises allow readers to develop their problem-solving skills, and online datasets allow readers to practise analysis of real data. William W. Hsieh is a professor emeritus in the Department of Earth, Ocean and Atmospheric Sciences at the University of British Columbia. Known as a pioneer in introducing machine learning to environmental science, he has written over 100 peer-reviewed journal papers on climate variability, machine learning, atmospheric science, oceanography, hydrology and agricultural science. He is the author of the book Machine Learning Methods in the Environmental Sciences (2009, Cambridge University Press), the first single-authored textbook on machine learning for environmental scientists. Currently retired in Victoria, British Columbia, he enjoys growing organic vegetables"--  |c Provided by publisher. 
588 0 |a Print version record. 
650 0 |a Environmental sciences  |x Data processing. 
650 0 |a Environmental protection  |x Data processing. 
650 0 |a Environmental management  |x Data processing. 
650 0 |a Machine learning. 
650 7 |a Environmental management  |x Data processing.  |2 fast  |0 (OCoLC)fst00913189 
650 7 |a Environmental protection  |x Data processing.  |2 fast  |0 (OCoLC)fst00913347 
650 7 |a Environmental sciences  |x Data processing.  |2 fast  |0 (OCoLC)fst00913482 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
776 0 8 |i Print version:  |a Hsieh, William Wei, 1955-  |t Introduction to environmental data science  |z 9781107065550  |w (DLC) 2022054278  |w (OCoLC)1355502288 
856 4 0 |u https://colorado.idm.oclc.org/login?url=https://doi.org/10.1017/9781107588493  |z Full Text (via Cambridge) 
915 |a 7 
956 |a Cambridge EBA 
956 |b Cambridge EBA ebooks Complete Collection 
998 |b New collection CUP.ebaebookscomplete 
994 |a 92  |b COD 
999 f f |s d9ea1797-e4d3-4224-b97b-1300fb186a79  |i 9cdde202-07ff-4b13-b9ed-5a5af09afb55 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |h Library of Congress classification  |i web