Abstract regular polytopes / Peter McMullen, Egon Schulte.

Abstract regular polytopes stand at the end of more than two millennia of geometrical research, which began with regular polygons and polyhedra. They are highly symmetric combinatorial structures with distinctive geometric, algebraic or topological properties; in many ways more fascinating than trad...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via Cambridge)
Main Author: McMullen, Peter, 1942-
Other Authors: Schulte, Egon, 1955-
Format: Electronic eBook
Language:English
Published: Cambridge ; New York : Cambridge University Press, 2002.
Series:Encyclopedia of mathematics and its applications.
Subjects:

MARC

LEADER 00000cam a2200000 a 4500
001 in00000026566
006 m o d
007 cr |||||||||||
008 020107s2002 enka ob 001 0 eng d
005 20230831172058.2
010 |z  2002017391 
035 |a (OCoLC)ceba133169118 
037 |a cebaCBO9780511546686 
040 |a COCUF  |b eng  |e pn  |c COCUF  |d BAKER  |d OCLCG  |d OCLCQ  |d N$T  |d YDXCP  |d OCLCQ  |d MERUC  |d CCO  |d E7B  |d OCLCQ  |d OCLCF  |d DKDLA  |d CAMBR  |d OCLCQ  |d AU@  |d IDEBK  |d OCLCQ  |d MM9  |d OCLCQ  |d AZK  |d JBG  |d COCUF  |d AGLDB  |d AUW  |d MOR  |d PIFBR  |d OCLCQ  |d STF  |d WRM  |d VTS  |d NRAMU  |d INT  |d OCLCQ  |d G3B  |d UKAHL  |d OCLCQ  |d K6U  |d INARC  |d UKCRE  |d OCLCQ  |d OCLCO  |d MHW  |d OCLCO  |d OCLCQ  |d S2H 
019 |a 57218453  |a 271785277  |a 559759104  |a 646725574  |a 722323456  |a 888655457  |a 961672226  |a 962598386  |a 988533977  |a 992093915  |a 1035649206  |a 1037742663  |a 1038701147  |a 1045494926  |a 1145798240  |a 1153470373  |a 1289427840 
020 |a 0511065000  |q (electronic bk.) 
020 |a 9780511065002  |q (electronic bk.) 
020 |a 9780511546686  |q (electronic bk.) 
020 |a 0511546688  |q (electronic bk.) 
020 |z 0521814960 
020 |z 9780521814966 
029 1 |a AU@  |b 000042830393 
029 1 |a AU@  |b 000053240986 
029 1 |a DEBBG  |b BV043093263 
029 1 |a DEBSZ  |b 422359300 
029 1 |a GBVCP  |b 802288057 
029 1 |a NZ1  |b 12008520 
035 |a (OCoLC)133169118  |z (OCoLC)57218453  |z (OCoLC)271785277  |z (OCoLC)559759104  |z (OCoLC)646725574  |z (OCoLC)722323456  |z (OCoLC)888655457  |z (OCoLC)961672226  |z (OCoLC)962598386  |z (OCoLC)988533977  |z (OCoLC)992093915  |z (OCoLC)1035649206  |z (OCoLC)1037742663  |z (OCoLC)1038701147  |z (OCoLC)1045494926  |z (OCoLC)1145798240  |z (OCoLC)1153470373  |z (OCoLC)1289427840 
050 4 |a QA691  |b .M395 2002eb 
049 |a GWRE 
100 1 |a McMullen, Peter,  |d 1942- 
245 1 0 |a Abstract regular polytopes /  |c Peter McMullen, Egon Schulte. 
260 |a Cambridge ;  |a New York :  |b Cambridge University Press,  |c 2002. 
300 |a 1 online resource (xiii, 651 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
490 1 |a Encyclopedia of mathematics and its applications 
504 |a Includes bibliographical references (pages 519-538) and indexes. 
588 0 |a Print version record. 
505 0 0 |g Machine generated contents note:  |g 1.  |t Classical Regular Polytopes --  |g 2.  |t Regular Polytopes --  |g 3.  |t Coxeter Groups --  |g 4.  |t Amalgamation --  |g 5.  |t Realizations --  |g 6.  |t Regular Polytopes on Space-Forms --  |g 7.  |t Mixing --  |g 8.  |t Twisting --  |g 9.  |t Unitary Groups and Hermitian Forms --  |g 10.  |t Locally Toroidal 4-Polytopes: I --  |g 11.  |t Locally Toroidal 4-Polytopes: II --  |g 12.  |t Higher Toroidal Polytopes --  |g 13.  |t Regular Polytopes Related to Linear Groups --  |g 14.  |t Miscellaneous Classes of Regular Polytopes. 
520 |a Abstract regular polytopes stand at the end of more than two millennia of geometrical research, which began with regular polygons and polyhedra. They are highly symmetric combinatorial structures with distinctive geometric, algebraic or topological properties; in many ways more fascinating than traditional regular polytopes and tessellations. The rapid development of the subject in the past 20 years has resulted in a rich new theory, featuring an attractive interplay of mathematical areas, including geometry, combinatorics, group theory and topology. Abstract regular polytopes and their groups provide an appealing new approach to understanding geometric and combinatorial symmetry. This is the first comprehensive up-to-date account of the subject and its ramifications, and meets a critical need for such a text, because no book has been published in this area of classical and modern discrete geometry since Coxeter's Regular Polytopes (1948) and Regular Complex Polytopes (1974). The book should be of interest to researchers and graduate students in discrete geometry, combinatorics and group theory. 
650 0 |a Polytopes. 
650 7 |a Polytopes.  |2 fast  |0 (OCoLC)fst01070819 
700 1 |a Schulte, Egon,  |d 1955- 
776 0 8 |i Print version:  |a McMullen, Peter, 1942-  |t Abstract regular polytopes.  |d Cambridge ; New York : Cambridge University Press, 2002  |w (DLC) 2002017391 
830 0 |a Encyclopedia of mathematics and its applications. 
856 4 0 |u https://colorado.idm.oclc.org/login?url=https://doi.org/10.1017/CBO9780511546686  |z Full Text (via Cambridge) 
915 |a - 
936 |a BATCHLOAD 
956 |a Cambridge EBA 
956 |b Cambridge EBA ebooks Complete Collection 
998 |b New collection CUP.ebaebookscomplete 
994 |a 92  |b COD 
999 f f |s 81b56d23-c176-4a63-ad29-a0cef549ac9b  |i 710ebe97-f93f-4c88-8f82-cae167851c38 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |h Library of Congress classification  |i web