Abstract regular polytopes / Peter McMullen, Egon Schulte.
Abstract regular polytopes stand at the end of more than two millennia of geometrical research, which began with regular polygons and polyhedra. They are highly symmetric combinatorial structures with distinctive geometric, algebraic or topological properties; in many ways more fascinating than trad...
Saved in:
Online Access: |
Full Text (via Cambridge) |
---|---|
Main Author: | |
Other Authors: | |
Format: | Electronic eBook |
Language: | English |
Published: |
Cambridge ; New York :
Cambridge University Press,
2002.
|
Series: | Encyclopedia of mathematics and its applications.
|
Subjects: |
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | in00000026566 | ||
006 | m o d | ||
007 | cr ||||||||||| | ||
008 | 020107s2002 enka ob 001 0 eng d | ||
005 | 20230831172058.2 | ||
010 | |z 2002017391 | ||
035 | |a (OCoLC)ceba133169118 | ||
037 | |a cebaCBO9780511546686 | ||
040 | |a COCUF |b eng |e pn |c COCUF |d BAKER |d OCLCG |d OCLCQ |d N$T |d YDXCP |d OCLCQ |d MERUC |d CCO |d E7B |d OCLCQ |d OCLCF |d DKDLA |d CAMBR |d OCLCQ |d AU@ |d IDEBK |d OCLCQ |d MM9 |d OCLCQ |d AZK |d JBG |d COCUF |d AGLDB |d AUW |d MOR |d PIFBR |d OCLCQ |d STF |d WRM |d VTS |d NRAMU |d INT |d OCLCQ |d G3B |d UKAHL |d OCLCQ |d K6U |d INARC |d UKCRE |d OCLCQ |d OCLCO |d MHW |d OCLCO |d OCLCQ |d S2H | ||
019 | |a 57218453 |a 271785277 |a 559759104 |a 646725574 |a 722323456 |a 888655457 |a 961672226 |a 962598386 |a 988533977 |a 992093915 |a 1035649206 |a 1037742663 |a 1038701147 |a 1045494926 |a 1145798240 |a 1153470373 |a 1289427840 | ||
020 | |a 0511065000 |q (electronic bk.) | ||
020 | |a 9780511065002 |q (electronic bk.) | ||
020 | |a 9780511546686 |q (electronic bk.) | ||
020 | |a 0511546688 |q (electronic bk.) | ||
020 | |z 0521814960 | ||
020 | |z 9780521814966 | ||
029 | 1 | |a AU@ |b 000042830393 | |
029 | 1 | |a AU@ |b 000053240986 | |
029 | 1 | |a DEBBG |b BV043093263 | |
029 | 1 | |a DEBSZ |b 422359300 | |
029 | 1 | |a GBVCP |b 802288057 | |
029 | 1 | |a NZ1 |b 12008520 | |
035 | |a (OCoLC)133169118 |z (OCoLC)57218453 |z (OCoLC)271785277 |z (OCoLC)559759104 |z (OCoLC)646725574 |z (OCoLC)722323456 |z (OCoLC)888655457 |z (OCoLC)961672226 |z (OCoLC)962598386 |z (OCoLC)988533977 |z (OCoLC)992093915 |z (OCoLC)1035649206 |z (OCoLC)1037742663 |z (OCoLC)1038701147 |z (OCoLC)1045494926 |z (OCoLC)1145798240 |z (OCoLC)1153470373 |z (OCoLC)1289427840 | ||
050 | 4 | |a QA691 |b .M395 2002eb | |
049 | |a GWRE | ||
100 | 1 | |a McMullen, Peter, |d 1942- | |
245 | 1 | 0 | |a Abstract regular polytopes / |c Peter McMullen, Egon Schulte. |
260 | |a Cambridge ; |a New York : |b Cambridge University Press, |c 2002. | ||
300 | |a 1 online resource (xiii, 651 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a data file | ||
490 | 1 | |a Encyclopedia of mathematics and its applications | |
504 | |a Includes bibliographical references (pages 519-538) and indexes. | ||
588 | 0 | |a Print version record. | |
505 | 0 | 0 | |g Machine generated contents note: |g 1. |t Classical Regular Polytopes -- |g 2. |t Regular Polytopes -- |g 3. |t Coxeter Groups -- |g 4. |t Amalgamation -- |g 5. |t Realizations -- |g 6. |t Regular Polytopes on Space-Forms -- |g 7. |t Mixing -- |g 8. |t Twisting -- |g 9. |t Unitary Groups and Hermitian Forms -- |g 10. |t Locally Toroidal 4-Polytopes: I -- |g 11. |t Locally Toroidal 4-Polytopes: II -- |g 12. |t Higher Toroidal Polytopes -- |g 13. |t Regular Polytopes Related to Linear Groups -- |g 14. |t Miscellaneous Classes of Regular Polytopes. |
520 | |a Abstract regular polytopes stand at the end of more than two millennia of geometrical research, which began with regular polygons and polyhedra. They are highly symmetric combinatorial structures with distinctive geometric, algebraic or topological properties; in many ways more fascinating than traditional regular polytopes and tessellations. The rapid development of the subject in the past 20 years has resulted in a rich new theory, featuring an attractive interplay of mathematical areas, including geometry, combinatorics, group theory and topology. Abstract regular polytopes and their groups provide an appealing new approach to understanding geometric and combinatorial symmetry. This is the first comprehensive up-to-date account of the subject and its ramifications, and meets a critical need for such a text, because no book has been published in this area of classical and modern discrete geometry since Coxeter's Regular Polytopes (1948) and Regular Complex Polytopes (1974). The book should be of interest to researchers and graduate students in discrete geometry, combinatorics and group theory. | ||
650 | 0 | |a Polytopes. | |
650 | 7 | |a Polytopes. |2 fast |0 (OCoLC)fst01070819 | |
700 | 1 | |a Schulte, Egon, |d 1955- | |
776 | 0 | 8 | |i Print version: |a McMullen, Peter, 1942- |t Abstract regular polytopes. |d Cambridge ; New York : Cambridge University Press, 2002 |w (DLC) 2002017391 |
830 | 0 | |a Encyclopedia of mathematics and its applications. | |
856 | 4 | 0 | |u https://colorado.idm.oclc.org/login?url=https://doi.org/10.1017/CBO9780511546686 |z Full Text (via Cambridge) |
915 | |a - | ||
936 | |a BATCHLOAD | ||
956 | |a Cambridge EBA | ||
956 | |b Cambridge EBA ebooks Complete Collection | ||
998 | |b New collection CUP.ebaebookscomplete | ||
994 | |a 92 |b COD | ||
999 | f | f | |s 81b56d23-c176-4a63-ad29-a0cef549ac9b |i 710ebe97-f93f-4c88-8f82-cae167851c38 |
952 | f | f | |p Can circulate |a University of Colorado Boulder |b Online |c Online |d Online |h Library of Congress classification |i web |