Dynamic information retrieval modeling / Grace Hui Yang, Marc Sloan, Jun Wang.
Big data and human-computer information retrieval (HCIR) are changing IR. They capture the dynamic changes in the data and dynamic interactions of users with IR systems. A dynamic system is one which changes or adapts over time or a sequence of events. Many modern IR systems and data exhibit these c...
Saved in:
Online Access: |
Full Text (via Morgan & Claypool) |
---|---|
Main Authors: | , , |
Format: | eBook |
Language: | English |
Published: |
[San Rafael, California] :
Morgan & Claypool,
2016.
|
Series: | Synthesis lectures on information concepts, retrieval, and services (Online) ;
# 49. |
Subjects: |
Table of Contents:
- 1. Introduction
- 1.1 Dynamics in information retrieval
- 1.2 Challenges
- 1.3 Overview of dynamic IR
- 1.4 Aims of this book
- 1.5 Structure
- 2. Information retrieval frameworks
- 2.1 Case study: multi-page search
- 2.2 Static information retrievaL
- 2.2.1 The ranking problem
- 2.2.2 The diversification problem
- 2.3 Interactive information retrieval
- 2.3.1 The Rocchio algorithm
- 2.3.2 Interactive probability ranking principle
- 2.4 Dynamic information retrieval
- 2.4.1 Reinforcement learning vs. dynamic IR modeling
- 2.4.2 Markov decision process
- 2.4.3 Partially observable Markov decision process
- 2.4.4 Bandits models
- 2.5 Modeling dynamic IR
- 3. Dynamic IR for a single query
- 3.1 Information filtering
- 3.1.1 Relevance feedback
- 3.1.2 Active learning
- 3.1.3 Multi-page search
- 3.2 Multi-armed bandits
- 3.2.1 Exploration vs. exploitation
- 3.2.2 Multi-armed bandit variations
- 3.3 Related work
- 4. Dynamic IR for sessions
- 4.1 Session search
- 4.1.1 Query change: a strong signal from the user
- 4.1.2 Markov chains in sessions
- 4.1.3 Two-way communication in sessions
- 4.2 Modeling sessions in the dynamic IR framework
- 4.2.1 States
- 4.2.2 Actions
- 4.2.3 Rewards
- 4.3 Dual-agent stochastic game: putting users into retrieval models
- 4.3.1 Framework formulation
- 4.3.2 Observation functions
- 4.3.3 Belief updates
- 4.4 Retrieval for sessions
- 4.4.1 Obtaining the policies by heuristics
- 4.4.2 Obtaining the policies by joint optimization
- 4.5 Related work
- 5. Dynamic IR for recommender systems
- 5.1 Collaborative filtering
- 5.2 Static recommendation
- 5.2.1 User-based approaches
- 5.2.2 Probabilistic matrix factorization
- 5.3 Dynamics in recommendation
- 5.3.1 Objective function
- 5.3.2 User dynamics
- 5.3.3 Item selection via confidence bound
- 5.4 Related work
- 6. Evaluating dynamic IR systems
- 6.1 IR evaluation
- 6.2 Text retrieval conference (TREC)
- 6.2.1 TREC interactive track
- 6.2.2 TREC session track
- 6.2.3 TREC dynamic domain (DD) track
- 6.3 The water filling model
- 6.4 The cube test
- 6.4.1 Filling up the cube
- 6.4.2 Stopping criteria
- 6.5 Plotting the dynamic progress
- 6.6 Related work
- 7. Conclusion
- Bibliography
- Authors' biographies.