A molecular perspective on the limits of life [electronic resource] : Enzymes under pressure.

From a purely operational standpoint, the existence of microbes that can grow under extreme conditions, or “extremophiles”, leads to the question of how the molecules making up these microbes can maintain both their structure and function. Furthermore, while microbes that live under extremes of temp...

Full description

Saved in:
Bibliographic Details
Online Access: Online Access (via OSTI)
Format: Government Document Electronic eBook
Language:English
Published: Washington, D.C. : Oak Ridge, Tenn. : United States. National Nuclear Security Administration ; distributed by the Office of Scientific and Technical Information, U.S. Department of Energy, 2016.
Subjects:

MARC

LEADER 00000nam a22000003u 4500
001 b9169060
003 CoU
005 20170623231512.9
006 m o d f
007 cr |||||||||||
008 170804e20160301||| o| f0|||||eng|d
035 |a (TOE)ost1361517 
035 |a (TOE)1361517 
040 |a TOE  |c TOE 
049 |a GDWR 
072 7 |a 75  |2 edbsc 
086 0 |a E 1.99:1361517 
086 0 |a E 1.99:1361517 
245 0 2 |a A molecular perspective on the limits of life  |h [electronic resource] :  |b Enzymes under pressure. 
260 |a Washington, D.C. :  |b United States. National Nuclear Security Administration ;  |a Oak Ridge, Tenn. :  |b distributed by the Office of Scientific and Technical Information, U.S. Department of Energy,  |c 2016. 
300 |a Article No. 22801 :  |b digital, PDF file. 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
500 |a Published through SciTech Connect. 
500 |a 03/01/2016. 
500 |a Condensed Matter Physics 19 2 ISSN 1607-324X AM. 
500 |a Q. Huang; K. N. Tran; J. M. Rodgers; D. H. Bartlett; R. J. Hemley; T. Ichiye. 
500 |a Carnegie Institution for Science, Washington, DC (United States) 
520 3 |a From a purely operational standpoint, the existence of microbes that can grow under extreme conditions, or “extremophiles”, leads to the question of how the molecules making up these microbes can maintain both their structure and function. Furthermore, while microbes that live under extremes of temperature have been heavily studied, those that live under extremes of pressure have been neglected, in part due to the difficulty of collecting samples and performing experiments under the ambient conditions of the microbe. But, thermodynamic arguments imply that the effects of pressure might lead to different organismal solutions than from the effects of temperature. Observationally, some of these solutions might be in the condensed matter properties of the intracellular milieu in addition to genetic modi1cations of the macromolecules or repair mechanisms for the macromolecules. Here, the effects of pressure on enzymes, which are proteins essential for the growth and reproduction of an organism, and some adaptations against these effects are reviewed and ampli1ed by the results from molecular dynamics simulations. Our aim is to provide biological background for soft matter studies of these systems under pressure. 
520 0 |a Enzymes; Hydrostatic; Intracellular Environment. 
536 |b NA0002006. 
650 7 |a Condensed Matter Physics, Superconductivity And Superfluidity.  |2 edbsc. 
710 1 |a United States.  |b National Nuclear Security Administration.  |4 spn. 
710 2 |a National Institutes of Health (U.S.).  |4 spn. 
710 2 |a National Science Foundation (U.S.).  |4 spn. 
710 1 |a United States.  |b Department of Energy.  |b Office of Scientific and Technical Information.  |4 dst. 
856 4 0 |u http://www.osti.gov/scitech/biblio/1361517  |z Online Access (via OSTI) 
907 |a .b91690602  |b 03-09-23  |c 08-04-17 
998 |a web  |b 08-04-17  |c f  |d m   |e p  |f eng  |g    |h 2  |i 1 
956 |a Information bridge 
999 f f |i 0cc43962-c03c-56f3-852c-e7ea0a2cc6e1  |s beeaf8e4-9f3d-531a-ba25-3c1fbd5e493c 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e E 1.99:1361517  |h Superintendent of Documents classification  |i web  |n 1