Single-electron detection and spectroscopy via relativistic cyclotron radiation [electronic resource]

Since 1897, we've understood that accelerating charges must emit electromagnetic radiation. Cyclotron radiation, the particular form of radiation emitted by an electron orbiting in a magnetic field, was first derived in 1904. Despite the simplicity of this concept, and the enormous utility of e...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via OSTI)
Corporate Author: Massachusetts Institute of Technology (Researcher)
Format: Government Document Electronic eBook
Language:English
Published: Washington, D.C. : Oak Ridge, Tenn. : United States. Department of Energy. Office of Nuclear Physics ; distributed by the Office of Scientific and Technical Information, U.S. Department of Energy, 2015.
Subjects:
Description
Summary:Since 1897, we've understood that accelerating charges must emit electromagnetic radiation. Cyclotron radiation, the particular form of radiation emitted by an electron orbiting in a magnetic field, was first derived in 1904. Despite the simplicity of this concept, and the enormous utility of electron spectroscopy in nuclear and particle physics, single-electron cyclotron radiation has never been observed directly. We demonstrate single-electron detection in a novel radiofrequency spec- trometer. Here, we observe the cyclotron radiation emitted by individual magnetically-trapped electrons that are produced with mildly-relativistic energies by a gaseous radioactive source. The relativistic shift in the cyclotron frequency permits a precise electron energy measurement. Precise beta electron spectroscopy from gaseous radiation sources is a key technique in modern efforts to measure the neutrino mass via the tritium decay endpoint, and this work demonstrates a fundamentally new approach to precision beta spectroscopy for future neutrino mass experiments.
Item Description:Published through SciTech Connect.
04/20/2015.
Physical Review Letters 114 16 ISSN 0031-9007; PRLTAO AM.
D. M. Asner; R. F. Bradley; L. de Viveiros; P. J. Doe; J. L. Fernandes; M. Fertl; E. C. Finn; J. A. Formaggio; D. Furse; A. M. Jones; J. N. Kofron; B. H. LaRoque; M. Leber; E. L. McBride; M. L. Miller; P. Mohanmurthy; B. Monreal; N. S. Oblath; R. G. H. Robertson; L. J. Rosenberg; G. Rybka; D. Rysewyk; M. G. Sternberg; J. R. Tedeschi; T. Thummler; B. A. VanDevender; N. L. Woods.
Univ. of California, Santa Barbara, CA (United States)
Physical Description:Article No. 162501 : digital, PDF file.