Final Technical Report Grant No. DE-FG02-97ER45653 Lance E. De Long, Principal Investigator, University of Kentucky Period of Performance [electronic resource] : 09/01/97 to 05/14/15.

Prior to 1997, the PI had studied the unusual upper critical magnetic field phase boundaries of several novel or exotic types of superconductors, including charge density wave materials such as NbSe<sub>2</sub>, organic superconductors such as κ-(ET)<sub>2</sub>Cu[N(CN)<su...

Full description

Saved in:
Bibliographic Details
Online Access: Online Access (via OSTI)
Format: Government Document Electronic eBook
Language:English
Published: Washington, D.C. : Oak Ridge, Tenn. : United States. Department of Energy. Office of Basic Energy Sciences ; distributed by the Office of Scientific and Technical Information, U.S. Department of Energy, 2016.
Subjects:

MARC

LEADER 00000nam a22000003u 4500
001 b9037746
003 CoU
005 20170517223245.3
006 m o d f
007 cr |||||||||||
008 170804e20161124||| ot f0|||||eng|d
035 |a (TOE)ost1333312 
035 |a (TOE)1333312 
040 |a TOE  |c TOE 
049 |a GDWR 
072 7 |a 75  |2 edbsc 
086 0 |a E 1.99:de--fg02-97er45653 
086 0 |a E 1.99:de--fg02-97er45653 
088 |a de--fg02-97er45653 
245 0 0 |a Final Technical Report Grant No. DE-FG02-97ER45653 Lance E. De Long, Principal Investigator, University of Kentucky Period of Performance  |h [electronic resource] :  |b 09/01/97 to 05/14/15. 
260 |a Washington, D.C. :  |b United States. Department of Energy. Office of Basic Energy Sciences ;  |a Oak Ridge, Tenn. :  |b distributed by the Office of Scientific and Technical Information, U.S. Department of Energy,  |c 2016. 
300 |a 32 p. :  |b digital, PDF file. 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
500 |a Published through SciTech Connect. 
500 |a 11/24/2016. 
500 |a "de--fg02-97er45653" 
500 |a Lance Eric De Long. 
500 |a Univ. of Kentucky, Lexington, KY (United States) 
513 |a Final; 
520 3 |a Prior to 1997, the PI had studied the unusual upper critical magnetic field phase boundaries of several novel or exotic types of superconductors, including charge density wave materials such as NbSe<sub>2</sub>, organic superconductors such as κ-(ET)<sub>2</sub>Cu[N(CN)<sub>2</sub>]Br, high-temperature oxide superconductors such as (Ba,K)BiO<sub>3</sub> and the cuprates, heavy fermion superconductors such as U<sub>6</sub>Fe, UBe<sub>13</sub>, URu<sub>2</sub>Si<sub>2</sub> and UPt<sub>3</sub>, and re-entrant Kondo alloys such as (La,Ce)Al<sub>2</sub> and ferromagnetic superconductors such as ErRh<sub>4</sub>B<sub>4</sub>. Most of these materials exhibited marked positive or negative curvature of H<sub>C2</sub>(T) which could not be explained by traditional pair-breaking models. It became clear that many of these materials had very short coherence lengths that made quantized vortices highly mobile (depinned) near the phase boundary, and the fundamental, equilibrium H<sub>C2</sub>(T) difficult to measure using finite field or current drives. These problems made the underlying physics obscure, and led to erroneous interpretations of experimental data in terms of models of exotic superconducting pairing mechanisms. Around 1995, these issues led the PI to take advantage of modern electron beam lithography techniques for patterning superconducting and ferromagnetic thin films on the nanoscale. Primarily due to strong magnetic shape anisotropy effects, EBL patterning has led to enhanced control of the spatial distribution and dynamics of topological defects such as domain walls and magnetic vortices, which can create serious energy dissipation and other limitations for modern devices. Moreover, finite size and interface effects also strongly alter phase transition temperatures and phase boundaries of superconducting and magnetic films, as well as introduce barriers to equilibration, enhanced fluctuations and alter magnetic relaxation. Geometrical frustration and spin ice behavior can also be systematically controlled in patterned film media. Film patterning thus provides an excellent tool for conducting highly-controlled, fundamental studies of cooperative phases and interactions in artificially structured condensed matter. 
536 |b FG02-97ER45653. 
650 7 |a Superconductors.  |2 local. 
650 7 |a Thin Films.  |2 local. 
650 7 |a Kentucky.  |2 local. 
650 7 |a Oxides.  |2 local. 
650 7 |a Electron Beams.  |2 local. 
650 7 |a Coherence Length.  |2 local. 
650 7 |a Transition Temperature.  |2 local. 
650 7 |a Phase Transformations.  |2 local. 
650 7 |a Spatial Distribution.  |2 local. 
650 7 |a Fluctuations.  |2 local. 
650 7 |a Spin.  |2 local. 
650 7 |a Topology.  |2 local. 
650 7 |a Magnetic Fields.  |2 local. 
650 7 |a Magnetic Flux.  |2 local. 
650 7 |a Anisotropy.  |2 local. 
650 7 |a Control.  |2 local. 
650 7 |a Crystal Defects.  |2 local. 
650 7 |a Ice.  |2 local. 
650 7 |a Interfaces.  |2 local. 
650 7 |a Nanostructures.  |2 local. 
650 7 |a Relaxation.  |2 local. 
650 7 |a Shape.  |2 local. 
650 7 |a Vortices.  |2 local. 
650 7 |a Transition Element Compounds.  |2 local. 
650 7 |a Domain Structure.  |2 local. 
650 7 |a Phase Studies.  |2 local. 
650 7 |a Research Programs.  |2 local. 
650 7 |a Ferromagnetic Materials.  |2 local. 
650 7 |a Dynamics.  |2 local. 
650 7 |a Metamaterials.  |2 local. 
650 7 |a Condensed Matter Physics, Superconductivity And Superfluidity.  |2 edbsc. 
710 1 |a United States.  |b Department of Energy.  |b Office of Basic Energy Sciences.  |4 spn. 
710 1 |a United States.  |b Department of Energy.  |b Office of Scientific and Technical Information.  |4 dst. 
856 4 0 |u http://www.osti.gov/scitech/biblio/1333312  |z Online Access (via OSTI) 
907 |a .b90377461  |b 03-09-23  |c 02-15-17 
998 |a web  |b 08-04-17  |c f  |d m   |e p  |f eng  |g    |h 0  |i 3 
956 |a Information bridge 
999 f f |i 4a689d93-3572-5f6c-b19d-8f01da6e531b  |s 84e253cb-8923-54fb-a7d3-091586c76b23 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e E 1.99:de--fg02-97er45653  |h Superintendent of Documents classification  |i web  |n 1