Hierarchical neural network structures for phoneme recognition [electronic resource] / Daniel Vasquez, Rainer Gruhn, and Wolfgang Minker.

In this book, hierarchical structures based on neural networks are investigated for automatic speech recognition. These structures are evaluated on the phoneme recognition task where a Hybrid Hidden Markov Model/Artificial Neural Network paradigm is used. The baseline hierarchical scheme consists of...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via Springer)
Main Author: Vásquez C., Daniel
Other Authors: Gruhn, Rainer, Minker, Wolfgang
Format: Electronic eBook
Language:English
Published: Heidelberg : Springer, 2013.
Series:Signals and communication technology.
Subjects:

MARC

LEADER 00000cam a2200000 a 4500
001 b8710623
006 m o d
007 cr |||||||||||
008 121108s2013 gw ad ob 001 0 eng d
005 20250203193425.3
019 |a 819070494  |a 985042239  |a 1005750315  |a 1112509635  |a 1162808537 
020 |a 9783642344251  |q (electronic bk.) 
020 |a 3642344259  |q (electronic bk.) 
020 |z 3642344240 
020 |z 9783642344244 
024 7 |a 10.1007/978-3-642-34425-1  |2 doi 
029 1 |a AU@  |b 000055863007 
029 1 |a DEBSZ  |b 442820992 
029 1 |a DEBSZ  |b 456513264 
029 1 |a NLGGC  |b 357507142 
029 1 |a NZ1  |b 15741062 
035 |a (OCoLC)spr820851867 
035 |a (OCoLC)820851867  |z (OCoLC)819070494  |z (OCoLC)985042239  |z (OCoLC)1005750315  |z (OCoLC)1112509635  |z (OCoLC)1162808537 
037 |a spr978-3-642-34425-1 
040 |a E7B  |b eng  |e pn  |c E7B  |d OCLCO  |d OCLCQ  |d YDXCP  |d SNK  |d NLGGC  |d NUI  |d SFB  |d OCLCF  |d NOC  |d MHW  |d COO  |d DEBSZ  |d OCLCQ  |d UAB  |d VT2  |d Z5A  |d ESU  |d IOG  |d N$T  |d OCLCQ  |d CEF  |d U3W  |d WYU  |d YOU  |d TKN  |d OCLCQ  |d LEAUB  |d OCLCQ  |d ERF  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL  |d OCLCQ 
049 |a GWRE 
050 4 |a P219  |b .V37 2013eb 
100 1 |a Vásquez C., Daniel.  |0 http://id.loc.gov/authorities/names/nr97023667 
245 1 0 |a Hierarchical neural network structures for phoneme recognition  |h [electronic resource] /  |c Daniel Vasquez, Rainer Gruhn, and Wolfgang Minker. 
260 |a Heidelberg :  |b Springer,  |c 2013. 
300 |a 1 online resource (xviii, 132 pages) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a volume  |b nc  |2 rdacarrier 
347 |a text file 
347 |b PDF 
490 1 |a Signals and communication technology,  |x 1860-4862 
504 |a Includes bibliographical references and index. 
520 |a In this book, hierarchical structures based on neural networks are investigated for automatic speech recognition. These structures are evaluated on the phoneme recognition task where a Hybrid Hidden Markov Model/Artificial Neural Network paradigm is used. The baseline hierarchical scheme consists of two levels each which is based on a Multilayered Perceptron. Additionally, the output of the first level serves as a second level input. The computational speed of the phoneme recognizer can be substantially increased by removing redundant information still contained at the first level output. Several techniques based on temporal and phonetic criteria have been investigated to remove this redundant information. The computational time could be reduced by 57% whilst keeping the system accuracy comparable to the baseline hierarchical approach. 
505 0 |a Background in Speech Recognition -- Phoneme Recognition Task -- Hierarchical Approach and Downsampling Schemes -- Extending the Hierarchical Scheme: Inter and Intra Phonetic Information -- Theoretical framework for phoneme recognition analysis. 
650 0 |a Phonemics.  |0 http://id.loc.gov/authorities/subjects/sh85101049 
650 0 |a Word recognition.  |0 http://id.loc.gov/authorities/subjects/sh85148114 
650 7 |a Phonemics.  |2 fast 
650 7 |a Word recognition.  |2 fast 
700 1 |a Gruhn, Rainer. 
700 1 |a Minker, Wolfgang.  |0 http://id.loc.gov/authorities/names/n99044613  |1 http://isni.org/isni/0000000121195642 
758 |i has work:  |a Hierarchical neural network structures for phoneme recognition (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGbdhhfPJ8RJ37BPPMjmbd  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Vásquez C., Daniel.  |t Hierarchical neural network structures for phoneme recognition.  |d Heidelberg : Springer, 2013  |w (DLC) 2012950030 
856 4 0 |u https://colorado.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-3-642-34425-1  |z Full Text (via Springer) 
830 0 |a Signals and communication technology.  |0 http://id.loc.gov/authorities/names/no2002055234 
915 |a - 
936 |a BATCHLOAD 
944 |a MARS - RDA ENRICHED 
956 |a Springer e-books 
956 |b Springer Nature - Springer Engineering eBooks 2013 English International 
994 |a 92  |b COD 
998 |b WorldCat record encoding level change 
999 f f |i 667ed252-07b7-5489-8bec-c54dabb41a55  |s 2603af8c-823f-5a9d-b2b0-5f55b12b72ea 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e P219 .V37 2013eb  |h Library of Congress classification  |i Ebooks, Prospector  |n 1