Optical fiber telecommunications. Vol. B, Systems and networks [electronic resource] / edited by Ivan Kaminow, Tingye Li, Alan E. Willner.

Optical Fiber Telecommunications VI (A&B) is the sixth in a series that has chronicled the progress in the R&D of lightwave communications since the early 1970s. Written by active authorities from academia and industry, this edition brings a fresh look to many essential topics, including dev...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via ScienceDirect)
Other Authors: Kaminow, Ivan P., 1930-, Li, Tingye, Willner, Alan E.
Format: Electronic eBook
Language:English
Published: Oxford : Academic Press Inc., 2013.
Edition:6th ed.
Series:Optics and photonics.
Subjects:
Table of Contents:
  • Machine generated contents note: ch. 1 Fiber Nonlinearity and Capacity: Single-Mode and Multimode Fibers / Roland Ryf
  • 1.1.Introduction
  • 1.2.Network traffic and optical systems capacity
  • 1.3.Information theory
  • 1.3.1.Basic concepts
  • 1.3.2.Link to optical communication
  • 1.4.Single-mode fibers: single polarization
  • 1.4.1.Stochastic nonlinear Schrodinger equation
  • 1.4.2.Nonlinear capacity of standard single-mode fiber
  • 1.4.3.Advanced single-mode fibers
  • 1.4.4.Analytic formula of fiber capacity
  • 1.5.Single-mode fibers: polarization-division multiplexing
  • 1.5.1.Nonlinear propagation: stochastic Manakov equations
  • 1.5.2.Capacity of PDM systems
  • 1.6.Multicore and multimode fibers
  • 1.6.1.Types of multicore and multimode fibers
  • 1.6.2.Capacity scaling with the number of modes
  • 1.6.3.Generalized Manakov equations for multimode fibers
  • 1.6.4.Description of a few-mode fiber
  • 1.6.5.Inter-modal cross-phase modulation
  • 1.6.6.Inter-modal four-wave mixing
  • 1.7.Conclusion
  • References
  • ch. 2 Commercial 100-Gbit/s Coherent Transmission Systems / Glenn A. Wellbrock
  • 2.1.Introduction
  • 2.2.Optical channel designs
  • 2.3.100G channel-from wish to reality
  • 2.4.Introduction of 100g channels to service provider networks
  • 2.5.Impact of commercial 100g system to transport network
  • 2.6.Outlook beyond commercial 100g systems
  • 2.7.Summary
  • References
  • ch. 3 Advances in Tb/s Superchannels / Xiang Liu
  • 3.1.Introduction
  • 3.2.Superchannel principle
  • 3.3.Modulation
  • 3.4.Multiplexing
  • 3.4.1.Overview of multiplexing schemes
  • 3.4.2.Seamless multiplexing
  • 3.4.3.Multiplexing with guard band
  • 3.5.Detection
  • 3.6.Superchannel transmission
  • 3.6.1.Transmission based on single-carrier modulation and O-OFDM multiplexing
  • 3.6.2.Transmission based on OFDM modulation and O-OFDM multiplexing
  • 3.6.3.Transmission based on Nyquist-WDM
  • 3.6.4.Optimization of the spectral-efficiency-distance-product
  • 3.7.Networking implications
  • 3.8.Conclusion
  • Glossary
  • References
  • ch. 4 Optical Satellite Communications / David Caplan
  • 4.1.Introduction
  • 4.1.1.Reduced diffraction
  • 4.1.2.Available bandwidth
  • 4.1.3.Commercially available technologies
  • 4.1.4.Lasercom challenges
  • 4.2.Lasercom link budgets
  • 4.3.Laser beam propagation through the atmosphere
  • 4.3.1.Atmospheric attenuation
  • 4.3.2.Atmospheric radiance
  • 4.3.3.Atmospheric turbulence
  • 4.3.4.Turbulence mitigation approaches
  • 4.4.Optical transceivers for space applications
  • 4.4.1.Overview of FSO modulation formats and sensitivities
  • 4.4.2.Transmitter technologies
  • 4.4.3.Receiver technologies and performance
  • 4.5.Space terminal
  • 4.5.1.Space environment
  • 4.5.2.Pointing, acquisition, and tracking
  • 4.5.3.Flight optomechanics assembly
  • 4.6.Ground terminal
  • 4.6.1.Ground terminal-telescope and optomechanics assembly
  • 4.6.2.Ground terminal-uplink transmitter
  • 4.6.3.Ground terminal-acquisition, pointing, and tracking assembly
  • 4.7.List of acronyms
  • References
  • ch. 5 Digital Signal Processing (DSP) and Its Application in Optical Communication Systems / David S. Millar
  • 5.1.Introduction
  • 5.1.1.Maximizing capacity in optical transport networks
  • 5.2.Digital signal processing and its functional blocks
  • 5.2.1.Optical coherent receiver and digital signal processing functionality
  • 5.3.Application of DBP-based DSP to optical fiber Transmission in the nonlinear regime
  • 5.3.1.Nonlinearity compensation in optical communications
  • 5.3.2.Single-channel optical transmission performance
  • 5.3.3.Single-channel digital backpropagation
  • 5.3.4.WDM transmission
  • 5.3.5.Digital backpropagation of the central channel
  • 5.3.6.Multi-channel digital backpropagation
  • 5.4.Summary and future questions
  • References
  • ch. 6 Advanced Coding for Optical Communications / Ivan B. Djordjevic
  • 6.1.Introduction
  • 6.2.Linear block codes
  • 6.2.1.Generator matrix
  • 6.2.2.Parity-check matrix
  • 6.2.3.Coding gain
  • 6.3.Codes on graphs
  • 6.3.1.Turbo codes
  • 6.3.2.Turbo-product codes (TPCs)
  • 6.3.3.Low-density parity-check (LDPC) codes
  • 6.3.4.Quasi-cyclic (QC) binary LDPC code design
  • 6.3.5.Decoding of binary LDPC codes and BER performance evaluation
  • 6.3.6.Nonbinary LDPC codes
  • 6.3.7.FPGA implementation of decoders for large-girth QC-LDPC codes
  • 6.4.Coded modulation
  • 6.4.1.Multilevel coding and block-interleaved coded modulation
  • 6.4.2.Polarization-multiplexed coded-OFDM
  • 6.4.3.Nonbinary LDPC-coded modulation
  • 6.4.4.Multidimensional coded modulation
  • 6.5.Adaptive nonbinary LDPC-coded modulation
  • 6.6.LDPC-coded turbo equalization
  • 6.6.1.MAP detection
  • 6.6.2.Multilevel turbo equalization
  • 6.6.3.Performance of LDPC-coded turbo equalizer
  • 6.6.4.Multilevel turbo equalizer robust to I/Q-imbalance and polarization offset
  • 6.6.5.Multilevel turbo equalization with digital backpropagation
  • 6.7.Information capacity of fiber-optics communication systems
  • 6.7.1.Channel capacity of channels with memory
  • 6.7.2.Calculation of information capacity of multilevel modulation schemes by forward recursion of BCJR algorithm
  • 6.7.3.Information capacity of systems with coherent detection
  • 6.8.Concluding remarks
  • References
  • ch. 7 Extremely Higher-Order Modulation Formats / Keisuke Kasai
  • 7.1.Introduction
  • 7.2.Spectral efficiency of QAM signal and shannon limit
  • 7.3.Fundamental configuration and key components of QAM coherent optical transmission
  • 7.3.1.Coherent light source
  • 7.3.2.Optical IQ modulator
  • 7.3.3.Coherent optical receiver and optical PLL
  • 7.3.4.Digital demodulator and equalizer
  • 7.4.Higher-order QAM transmission experiments
  • 7.4.1.1024 QAM (60Gbit/s) single-carrier transmission
  • 7.4.2.256 QAM-OFDM coherent transmission
  • 7.4.3.Ultrahigh-speed OTDM-RZ/QAM transmission
  • 7.5.Conclusion
  • References
  • ch. 8 Multicarrier Optical Transmission / William Shieh
  • 8.1.Historical perspective of optical multicarrier transmission
  • 8.1.1.Variations of optical multicarrier transmission methods
  • 8.1.2.Research trends in optical multicarrier transmission
  • 8.2.OFDM basics
  • 8.2.1.Mathematical formulation of an OFDM signal
  • 8.2.2.Discrete Fourier transform implementation of OFDM
  • 8.2.3.Cyclic prefix for OFDM
  • 8.2.4.Spectral efficiency for optical OFDM
  • 8.3.Optical multicarrier systems based on electronic FFT
  • 8.3.1.Coherent optical OFDM
  • 8.3.2.Direct-detection optical OFDM
  • 8.4.Optical multicarrier systems based on optical multiplexing
  • 8.4.1.All-optical OFDM
  • 8.4.2.Optical superchannel
  • 8.4.3.Optical frequency division multiplexing
  • 8.5.Nonlinearity in optical multicarrier transmission
  • 8.5.1.High spectral-efficiency long-haul transmission
  • 8.5.2.Optimal symbol rate in multicarrier systems
  • 8.5.3.The information spectral limit in multicarrier systems
  • 8.5.4.Nonlinearity mitigation for multicarrier systems
  • 8.6.Applications of optical multicarrier transmissions
  • 8.6.1.Long-reach and high-capacity systems
  • 8.6.2.Optical access networks
  • 8.6.3.Indoor and free-space multicarrier optical systems
  • 8.7.Future research directions for multicarrier transmission
  • References
  • ch.
  • 9 Optical OFDM and Nyquist Multiplexing / Wolfgang Freude
  • 9.1.Introduction
  • 9.2.Orthogonal shaping of temporal or spectral functions for efficient multiplexing
  • 9.2.1.Definitions of orthogonality
  • 9.2.2.Transmitter
  • 9.2.3.Channel
  • 9.2.4.Receiver
  • 9.2.5.Avoiding inter-channel and inter-symbol interference
  • 9.2.6.Pulse-shaping in the digital, electrical, and optical domain-a comparison
  • 9.3.Optical Fourier transform based multiplexing
  • 9.3.1.Electronic Fourier transform processing
  • 9.3.2.The optical Fourier transform receiver
  • 9.3.3.The optical Fourier transform transmitter
  • 9.3.4.Optical Fourier transform processors
  • 9.4.Encoding and decoding of OFDM signals
  • 9.4.1.OFDM transmitter
  • 9.4.2.OFDM receivers
  • 9.4.3.OFDM transmission-an example of an all-optical implementation
  • 9.5.Conclusion
  • 9.6.Mathematical definitions and relations
  • References
  • ch. 10 Spatial Multiplexing Using Multiple-Input Multiple-Output Signal Processing / Sebastian Randel
  • 10.1.Optical network capacity scaling through spatial multiplexing
  • 10.1.1.The capacity crunch
  • 10.1.2.Spatial multiplexing
  • 10.1.3.Crosstalk management in SDM systems
  • 10.2.Coherent MIMO-SDM with selective mode excitation
  • 10.2.1.Signal orthogonality
  • 10.2.2.MIMO system capacities and outage
  • 10.3.MIMO DSP
  • 10.3.1.General receiver DSP functional blocks
  • 10.3.2.Channel estimation
  • 10.3.3.Adaptive MIMO equalization
  • 10.3.4.MIMO equalizer complexity
  • 10.4.Mode multiplexing components
  • 10.4.1.Mode multiplexer characteristics
  • 10.4.2.Mode multiplexer design
  • 10.4.3.Mode couplers for few-mode fibers
  • 10.4.4.Mode couplers for multi-core fibers
  • 10.5.Optical amplifiers for coupled-mode transmission
  • 10.5.1.Optical amplifiers for few-mode fibers
  • 10.5.2.Optical amplifier for multi-core fibers
  • 10.6.Systems experiments
  • 10.6.1.Single-span MIMO-SDM transmission over few-mode fiber
  • 10.6.2.Multi-span MIMO-SDM transmission over few-mode fiber
  • 10.6.3.MIMO-SDM in coupled multi-core fiber
  • 10.7.Conclusion
  • References
  • ch. 11 Mode Coupling and its Impact on Spatially Multiplexed Systems / Joseph M. Kahn
  • 11.1.Introduction
  • 11.2.Modes and mode coupling in optical fibers
  • 11.2.1.Modes in optical fibers
  • 11.2.2.Mode coupling and its origins
  • 11.2.3.Mode coupling models
  • 11.3.Modal dispersion
  • 11.3.1.Coupled modal dispersion
  • 11.3.2.Group delay statistics in strong-coupling regime
  • 11.3.3.Statistics of group delay spread
  • 11.4.Mode-dependent loss and gain
  • 11.4.1.Statistics of strongly coupled mode-dependent gains and losses
  • 11.4.2.Model for mode-dependent loss and gain
  • 11.4.3.Properties of the product of random matrices
  • 11.4.4.Numerical simulations of mode-dependent loss and gain
  • Note continued: 11.4.5.Spatial whiteness of received noise
  • 11.4.6.Frequency-dependent mode-dependent loss and gain
  • 11.5.Direct-detection mode-division multiplexing
  • 11.6.Coherent mode-division multiplexing
  • 11.6.1.Average channel capacity of narrowband systems
  • 11.6.2.Wideband systems and frequency diversity
  • 11.6.3.Signal processing for mode-division-multiplexing
  • 11.7.Conclusion
  • References
  • ch. 12 Multimode Communications Using Orbital Angular Momentum / Alan E. Willner
  • 12.1.Perspective on orbital angular momentum (OAM) multiplexing in communication systems
  • 12.2.Fundamentals of OAM
  • 12.3.Techniques for OAM generation, multiplexing/demultiplexing, and detection
  • 12.3.1.OAM generation
  • 12.3.2.OAM multiplexing/demultiplexing
  • 12.3.3.OAM detection
  • 12.4.Free-space communication links using OAM multiplexing
  • 12.4.1.OAM+WDM link
  • 12.4.2.OAM+PDM link
  • 12.4.3.Scalability of OAM+PDM in spatial domain
  • 12.5.Fiber-based transmission links
  • 12.5.1.Fiber design
  • 12.5.2.Coupling and controlling OAM in fibers
  • 12.5.3.Long-length propagation of OAM in fiber
  • 12.5.4.Fiber-based data transmission using OAM
  • 12.6.Optical signal processing using OAM
  • 12.6.1.Data exchange
  • 12.6.2.Add/drop
  • 12.6.3.Multicasting
  • 12.6.4.Monitoring and compensation
  • 12.7.Future challenges of OAM communications
  • References
  • ch. 13 Transmission Systems Using Multicore Fibers / Shoichiro Matsuo
  • 13.1.Expectations of multicore fibers
  • 13.2.MCF design
  • 13.2.1.Types of MCFs
  • 13.2.2.Inter-core crosstalk in homogeneous uncoupled MCFs
  • 13.2.3.Inter-core crosstalk in heterogeneous uncoupled MCFs
  • 13.3.Methods of coupling to MCFs
  • 13.3.1.Lens coupling systems
  • 13.3.2.Fiber-based systems and waveguide-based systems
  • 13.3.3.Splicing techniques
  • 13.4.Transmission experiments with uncoupled cores
  • 13.4.1.Early demonstrations
  • 13.4.2.Scalability of core number
  • 13.4.3.1-R repeated demonstrations
  • 13.5.Laguerre-Gaussian mode division multiplexing transmission in MCFs
  • References
  • ch. 14 Elastic Optical Networking / Masahiko Jinno
  • 14.1.Introduction
  • 14.1.1.The only constant in the future network is change
  • 14.1.2.Why "business as usual" is not an option for DWDM
  • 14.2.Enabling technologies
  • 14.2.1.Flexible spectrum ROADM
  • 14.2.2.Bitrate variable transceiver
  • 14.2.3.The extended role of network control systems
  • 14.2.4.EON trials and other proof points
  • 14.3.The EON vision and some new concepts
  • 14.3.1.Flexible choice of EOP parameters
  • 14.3.2.Sliceable transceiver
  • 14.3.3.Flexible client interconnect
  • 14.3.4.Spectrum allocation and reallocation
  • 14.3.5.Managing a connection per demand instead of managing wavelength
  • 14.3.6.Adaptive restoration
  • 14.4.A comparison of EON and fixed DWDM
  • 14.4.1.A point-to-point comparison
  • 14.4.2.A network level comparison
  • 14.4.3.A comparison that includes the client network
  • 14.5.Standards progress
  • 14.5.1.DWDM network architecture
  • 14.5.2.OTN mapping and multiplexing
  • 14.5.3.Control plane: ASON, WSON, and GMPLS
  • 14.5.4.Standardizing on flexible spectrum
  • 14.6.Summary
  • References
  • ch. 15 ROADM-Node Architectures for Reconfigurable Photonic Networks / Paparao Palacharla
  • Summary
  • 15.1.Introduction
  • 15.2.The ROADM node
  • 15.2.1.Features-from necessities to luxuries
  • 15.2.2.Evolution of the switching core
  • 15.2.3.The mux/demux section of the ROADM node
  • 15.2.4.Client-side switching
  • 15.2.5.Flexible transponders
  • 15.3.Network applications: Studies and demonstrations
  • 15.3.1.CN-ROADMs and CNC-ROADMs in dynamic optical networks
  • 15.3.2.Predeployment of regenerators for faster provisioning and lower MTTR
  • 15.3.3.Wavelength grooming and traffic re-routing
  • 15.3.4.Automated wavelength restoration
  • 15.3.5.Bandwidth on demand
  • 15.4.Two compatible visions of the future
  • 15.4.1.Vision 1: highly dynamic network
  • 15.4.2.Vision 2: space-division multiplexed systems
  • 15.5.Conclusions
  • References
  • ch. 16 Convergence of IP and Optical Networking / Cesar Santivanez
  • 16.1.Introduction
  • 16.2.Motivation
  • 16.2.1.Network services
  • 16.2.2.Network architectures
  • 16.2.3.Network technologies
  • 16.3.Background
  • 16.3.1.Network stack
  • 16.3.2.Management, control, and data planes
  • 16.3.3.Control plane functions
  • 16.3.4.Traffic management
  • 16.3.5.Recovery
  • 16.3.6.Multi-domain
  • 16.4.Standards
  • 16.5.Next-generation control and management
  • 16.5.1.Drivers
  • 16.5.2.Novel framework
  • 16.5.3.Research extensions: highly heterogeneous networks
  • References
  • ch. 17 Energy-Efficient Telecommunications / Rodney S. Tucker
  • 17.1.Introduction
  • 17.2.Energy use in commercial optical communication systems
  • 17.2.1.Long reach and core transmission systems
  • 17.2.2.Access networks
  • 17.2.3.Switching and routing equipments
  • 17.2.4.Overhead energy and common equipment constraints
  • 17.3.Energy in optical communication systems
  • 17.4.Transmission and switching energy models
  • 17.4.1.Transmission system energy model
  • 17.4.2.Lower bound on energy consumption of optically amplified transport
  • 17.4.3.Energy consumption in optical transmitters and receivers
  • 17.4.4.Transmission system lower bounds
  • 17.5.Network Energy Models
  • 17.5.1.Network energy model
  • 17.5.2.Switching devices and fabrics
  • 17.5.3.Switching sub-system energy
  • 17.5.4.End-to-end network energy models
  • 17.5.5.Comparison of energy projections with network-based data
  • 17.6.Conclusion
  • References
  • ch. 18 Advancements in Metro Regional and Core Transport Network Architectures for the Next-Generation Internet / Loukas Paraschis
  • 18.1.Introduction
  • 18.2.Network architecture evolution
  • 18.3.Transport technology innovations
  • 18.3.1.IP/MPLS transport
  • 18.3.2.100 Gb/s interconnections and coherent DWDM transmission
  • 18.3.3.Optical transport networking (ITU G.709 standard)
  • 18.3.4.Fully flexible DWDM add-drop multiplexing and switching
  • 18.3.5.WSON and GMPLS control-plane advancements
  • 18.4.The network value of photonics technology innovation
  • 18.5.The network value of optical transport innovation
  • 18.6.Outlook
  • 18.7.Summary
  • References
  • ch. 19 Novel Architectures for Streaming/Routing in Optical Networks / Vincent W.S. Chan
  • 19.1.Introduction and historical perspectives on connection and connectionless oriented optical transports
  • 19.2.Essence of the major types of optical transports: optical packet switching (OPS), optical burst switching (OBS), and optical flow switching (OFS)
  • 19.2.1.A brief history of OFS
  • 19.3.Network architecture description and layering
  • 19.3.1.The need for new architecture constructs for optical networks
  • 19.3.2.OFS architectural principles
  • 19.4.Definition of network "capacity" and evaluation of achievable network capacity regions of different types of optical transports
  • 19.5.Physical topology of fiber plant and optical switching functions at nodes and the effects of transmission impairments and session dynamics on network architecture
  • 19.6.Network management and control functions and scalable architectures
  • 19.7.Media access control (MAC) protocol and implications on routing protocol efficiency and scalability
  • 19.8.Transport layer protocol for new optical transports
  • 19.9.Cost, power consumption throughput, and delay performance
  • 19.10.Summary
  • References
  • ch. 20 Recent Advances in High-Frequency (> 10GHz) Microwave Photonic Links / Edward I. Ackerman
  • 20.1.Introduction
  • 20.2.Photonic links for receive-only applications
  • 20.2.1.Effect of modulator bias point
  • 20.2.2.Effect of balanced photodetection
  • 20.3.Photonic links for transmit and receive applications
  • 20.3.1.Broad bandwidth TIPRx
  • 20.3.2.High frequency TIPRx
  • 20.4.Summary
  • References
  • ch.
  • 21 Advances in 1-100GHz Microwave Photonics: All-Band Optical Wireless Access Networks Using Radio Over Fiber Technologies / Shu-Hao Fan
  • 21.1.Introduction
  • 21.2.Optical RF wave generation
  • 21.2.1.Overview of optical RF signal generation
  • 21.2.2.Types of optical RF waves
  • 21.2.3.ODSB millimeter wave
  • 21.2.4.OSSB+C millimeter wave
  • 21.2.5.OCS millimeter wave
  • 21.2.6.Conversion efficiency
  • 21.3.Converged ROF transmission system
  • 21.3.1.Generation and transmission of multiple RF bands
  • 21.3.2.Baseband, microwave, and millimeter wave
  • 21.3.3.Millimeter wave with wireless services in low RF regions
  • 21.3.4.60-GHz sub-bands generation
  • 21.4.Conclusions
  • References
  • ch. 22 PONs: State of the Art and Standardized / Frank Effenberger
  • 22.1.Introduction to PON
  • 22.2.TDM PONs: Basic design and issues
  • 22.2.1.Brief review of TDM PON standards
  • 22.2.2.Generation 4: 10Gbit/s PONs
  • 22.2.3.40G serial
  • 22.3.Video overlay
  • 22.4.WDM PONs: common elements
  • 22.4.1.Injection locked
  • 22.4.2.Wavelength reuse
  • 22.4.3.Self-seeded
  • 22.4.4.Tunable
  • 22.4.5.Coherent
  • 22.5.FDM-PONs: Motivation
  • 22.5.1.Pure FDM
  • 22.5.2.Incoherent OFDM
  • 22.5.3.Optical OFDM
  • 22.6.Hybrid TWDM-PON
  • 22.7.Summary and outlook
  • References
  • ch. 23 Wavelength-Division-Multiplexed Passive Optical Networks (WDM PONs) / Y. Takushima
  • 23.1.Introduction
  • 23.2.Light sources for WDM PON
  • 23.2.1.Distributed feedback (DFB) laser
  • 23.2.2.Tunable laser
  • 23.2.3.Spectrum-sliced incoherent light source
  • 23.2.4.Reflective light sources
  • 23.2.5.Re-modulation scheme for upstream transmission
  • 23.3.WDM PON architectures
  • 23.3.1.WDM PON in wavelength-routing architecture
  • 23.3.2.WDM PON in broadcast-and-select architecture
  • 23.3.3.WDM PON in ring/bus architectures
  • 23.4.Long-reach WDM PONs
  • 23.4.1.Fundamental limitations on the reach of WDM PON
  • 23.4.2.Long-reach WDM PON using remote optical amplifiers
  • 23.4.3.Long-reach WDM PON using coherent detection technique
  • 23.5.Next-generation high-speed WDM PON
  • 23.5.1.Limitation on the operating speed of colorless light sources
  • Note continued: 23.5.2.Modulation bandwidth of RSOA and its equalization technique
  • 23.5.3.Utilization of advanced modulation formats
  • 23.5.4.Ultrahigh-speed WDM PON
  • 23.6.Fault monitoring, localization and protection techniques
  • 23.6.1.Fault localization techniques for WDM PON
  • 23.6.2.Survivable WDM PONs
  • 23.7.Summary
  • Appendix: Acronyms
  • References
  • ch. 24 FTTX Worldwide Deployment / Zisen Zhao
  • 24.1.Introduction
  • 24.2.Background of fiber architectures
  • 24.2.1.Passive optical networks (PONs)
  • 24.2.2.Point to point
  • 24.3.Technology variants
  • 24.3.1.B-PON
  • 24.3.2.GE-PON
  • 22.3.3.G-PON
  • 24.3.4.Next-generation PON technologies
  • 24.3.5.Coexistence and wavelength plan
  • 24.3.6.Extended reach systems
  • 24.3.7.CO consolidation
  • 24.4.Status and FTTX deployments around the world
  • 24.4.1.FTTX in Asia
  • 24.4.2.FTTX in Europe and Africa
  • 24.4.3.FTTX in the Americas
  • 24.5.What's Next?
  • 24.6.Summary
  • References
  • ch. 25 Modern Undersea Transmission Technology / Georg Mohs
  • 25.1.Introduction
  • 25.1.1.Reach, latency and capacity
  • 25.1.2.The capacity challenge
  • 25.2.Coherent transmission technology in undersea systems
  • 25.2.1.Introduction to coherent detection
  • 25.2.2.Linear impairment compensation with coherent detection
  • 25.2.3.Nonlinearity accumulation in dispersion uncompensated transmission
  • 25.3.Increasing spectral efficiency by bandwidth constraint
  • 25.3.1.Inter-symbol interference compensation by linear filters
  • 25.3.2.Multi-symbol detection
  • 25.4.Nyquist carrier spacing
  • 25.4.1.Spectral shaping for single channel modulation formats
  • 25.4.2.Orthogonal frequency division multiplexing (OFDM)
  • 25.4.3.Super-channels
  • 25.5.Increasing spectral efficiency by increasing the constellation size
  • 25.5.1.Higher order modulation formats
  • 25.5.2.Receiver sensitivity
  • 25.5.3.Coded modulation
  • 25.6.Future trends
  • 25.6.1.Nonlinearitycompensation
  • 25.6.2.Multi-core and multi-mode fiber
  • 25.7.Summary
  • List of acronyms
  • References.