A Panoramic View of Riemannian Geometry / by Marcel Berger.

Riemannian geometry has today become a vast and important subject. This new book of Marcel Berger sets out to introduce readers to most of the living topics of the field and convey them quickly to the main results known to date. These results are stated without detailed proofs but the main ideas inv...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via Springer)
Main Author: Berger, Marcel
Format: eBook
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 2003.
Subjects:

MARC

LEADER 00000cam a2200000Mi 4500
001 b8008926
006 m o d
007 cr |||||||||||
008 121227s2003 gw ob 001 0 eng
005 20240418145757.7
019 |a 922905282 
020 |a 9783642182457  |q (electronic bk.) 
020 |a 3642182453  |q (electronic bk.) 
020 |a 3540653171  |q (acid-free paper) 
020 |a 9783540653172  |q (acid-free paper) 
020 |z 9783642621215 
020 |z 364262121X 
020 |z 3642182453 
035 |a (OCoLC)spr851821086 
035 |a (OCoLC)851821086  |z (OCoLC)922905282 
037 |a spr10.1007/978-3-642-18245-7 
040 |a AU@  |b eng  |e pn  |c AU@  |d OCLCO  |d GW5XE  |d OCLCQ  |d OCLCF  |d COO  |d YDXCP  |d EBLCP  |d OCLCQ 
049 |a GWRE 
050 4 |a QA641-670 
100 1 |a Berger, Marcel. 
245 1 2 |a A Panoramic View of Riemannian Geometry /  |c by Marcel Berger. 
260 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2003. 
300 |a 1 online resource (xlvi, 824 pages) 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
505 0 |a From the contents: Euclidean Geometry and Analysis: Old but also Some New -- Gauss' Contributions on Surfaces and also some more Recent Things -- What Riemann Did and Other Things -- Metric Properties of Riemannian Manifolds and the Geometric Meaning of Sectional and Ricci Curvature -- Volumes and Isoic Type Inequalities in Riemannian Manifolds -- Riemannian Manifolds as Quantum Mechanic Objects: The Spectrum and the Eigenfunctions of Laplacian -- The Search for Distinguished Metrics: What is the Best Riemannian Metric on a Given Compact Manifold? -- From Curvature to Topology -- Global Parallel Transport and another Riemannian Hierarchy: Holonomy Groups and Kähler Manifolds -- Some other important Topics -- The Technical chapter. 
504 |a Includes bibliographical references (pages 723-788) and indexes. 
520 |a Riemannian geometry has today become a vast and important subject. This new book of Marcel Berger sets out to introduce readers to most of the living topics of the field and convey them quickly to the main results known to date. These results are stated without detailed proofs but the main ideas involved are described and motivated. This enables the reader to obtain a sweeping panoramic view of almost the entirety of the field. However, since a Riemannian manifold is, even initially, a subtle object, appealing to highly non-natural concepts, the first three chapters devote themselves to introducing the various concepts and tools of Riemannian geometry in the most natural and motivating way, following in particular Gauss and Riemann. 
650 0 |a Mathematics. 
650 0 |a Global differential geometry. 
650 7 |a Global differential geometry.  |2 fast  |0 (OCoLC)fst00943477. 
650 7 |a Mathematics.  |2 fast  |0 (OCoLC)fst01012163. 
776 0 8 |i Print version:  |z 9783642621215. 
856 4 0 |u https://colorado.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-642-18245-7  |z Full Text (via Springer) 
907 |a .b80089264  |b 07-02-19  |c 06-02-15 
998 |a web  |b 05-01-17  |c f  |d b   |e -  |f eng  |g gw   |h 2  |i 1 
907 |a .b80089264  |b 05-09-17  |c 06-02-15 
915 |a M 
956 |a Springer e-books 
956 |b Springer Nature - Springer Book Archive - Springer Mathematics 
956 |a Mathematics 
956 |a Springer e-books: Archive 
999 f f |i 479d5d32-b8f7-51b3-a032-aef6db72b33d  |s 2eb45053-c24d-5434-a8f3-d28a24891999 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e QA641-670  |h Library of Congress classification  |i Ebooks, Prospector  |n 1