Arithmetic of higher-dimensional algebraic varieties / Bjorn Poonen, Yuri Tschinkel, editors.

One of the great successes of twentieth century mathematics has been the remarkable qualitative understanding of rational and integral points on curves, gleaned in part through the theorems of Mordell, Weil, Siegel, and Faltings. It has become clear that the study of rational and integral points has...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via Springer)
Other Authors: Poonen, Bjorn, Tschinkel, Yuri
Format: eBook
Language:English
Published: Boston : Birkhäuser, ©2004.
Series:Progress in mathematics (Boston, Mass.) ; v. 226.
Subjects:

MARC

LEADER 00000cam a2200000Ka 4500
001 b7985594
006 m o d
007 cr |||||||||||
008 101112s2004 maua ob 001 0 eng d
005 20240418143822.2
019 |a 626032513  |a 840276467  |a 853261235  |a 958519445 
020 |a 9780817681708  |q (electronic bk.) 
020 |a 0817681701  |q (electronic bk.) 
020 |z 081763259X  |q (acid-free paper) 
020 |z 9780817632595  |q (acid-free paper) 
020 |z 376433259X  |q (Basel ;  |q acid-free paper) 
020 |z 9783764332594  |q (Basel ;  |q acid-free paper) 
020 |z 9781461264712 
020 |z 1461264715 
035 |a (OCoLC)spr681203666 
035 |a (OCoLC)681203666  |z (OCoLC)626032513  |z (OCoLC)840276467  |z (OCoLC)853261235  |z (OCoLC)958519445 
037 |a spr10.1007/978-0-8176-8170-8 
040 |a OCLCE  |b eng  |e pn  |c OCLCE  |d OCLCQ  |d I9W  |d AU@  |d OCLCO  |d GW5XE  |d OCLCQ  |d OCLCF  |d OCLCQ  |d EBLCP 
042 |a dlr 
049 |a GWRE 
050 4 |a QA564  |b .A7325 2004 
245 0 0 |a Arithmetic of higher-dimensional algebraic varieties /  |c Bjorn Poonen, Yuri Tschinkel, editors. 
260 |a Boston :  |b Birkhäuser,  |c ©2004. 
300 |a 1 online resource (xvi, 287 pages) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
490 1 |a Progress in mathematics ;  |v v. 226. 
504 |a Includes bibliographical references and index. 
505 0 |a Abstracts -- Introduction -- Part I. Expository Articles. Swinnerton-Dyer, P.: Diophantine equations: progress and problems. Heath-Brown, R.: Rational points and analytic number theory. Harari, D.: Weak approximation on algebraic varieties. Peyre, E.: Counting points on varieties using universal torsors -- Part II. Research Articles. Batyrev, V.V.; Popov, O.N.: The Cox ring of a Del Pezzo surface. Broberg, N.; Salberger, P.: Counting rational points on threefolds. Colliot-Thélène, J-L.; Gille, P.: Remarques sur l'approximation faible sur un corps de fonctions d'une variable. Ellenberg, J.S.: K3 surfaces over number fields with geometric Picard number one. Graber, T.; Harris, J.; Mazur, B.; Starr, J.: Jumps in Mordell-Weil rank and Arithmetic Surjectivity. Hassett, B.; Tschinkel, Y.: Universal torsors and Cox rings. Poonen, B.; Voloch, J.F.: Random diophantine equations. Raskind, W.; Scharaschkin, V.: Descent on simply connected surfaces over algebraic number fields. Shalika, J.; Takloo-Bighash, R.; Tschinkel, Y.: Rational points on compactification of semi-simple groups of rank 1. Swinnerton-Dyer, P.: Weak Approximation on Del Pezzo surfaces of degree 4. Whittenberg, O.: Transcendental Brauer-Manin obstruction on a pencil of elliptic curves. -- Glossary -- Index. 
520 |a One of the great successes of twentieth century mathematics has been the remarkable qualitative understanding of rational and integral points on curves, gleaned in part through the theorems of Mordell, Weil, Siegel, and Faltings. It has become clear that the study of rational and integral points has deep connections to other branches of mathematics: complex algebraic geometry, Galois and étale cohomology, transcendence theory and diophantine approximation, harmonic analysis, automorphic forms, and analytic number theory. This text, which focuses on higher-dimensional varieties, provides precisely such an interdisciplinary view of the subject. It is a digest of research and survey papers by leading specialists; the book documents current knowledge in higher-dimensional arithmetic and gives indications for future research. It will be valuable not only to practitioners in the field, but to a wide audience of mathematicians and graduate students with an interest in arithmetic geometry. Contributors: Batyrev, V.V.; Broberg, N.; Colliot-Thélène, J-L.; Ellenberg, J.S.; Gille, P.; Graber, T.; Harari, D.; Harris, J.; Hassett, B.; Heath-Brown, R.; Mazur, B.; Peyre, E.; Poonen, B.; Popov, O.N.; Raskind, W.; Salberger, P.; Scharaschkin, V.; Shalika, J.; Starr, J.; Swinnerton-Dyer, P.; Takloo-Bighash, R.; Tschinkel, Y.: Voloch, J.F.; Wittenberg, O. 
588 0 |a Print version record. 
650 0 |a Algebraic varieties. 
650 7 |a Algebraic varieties.  |2 fast  |0 (OCoLC)fst00804944. 
700 1 |a Poonen, Bjorn. 
700 1 |a Tschinkel, Yuri. 
776 0 8 |i Print version:  |t Arithmetic of higher-dimensional algebraic varieties.  |d Boston : Birkhäuser, ©2004  |w (DLC) 2003069594  |w (OCoLC)53919170. 
830 0 |a Progress in mathematics (Boston, Mass.) ;  |v v. 226. 
856 4 0 |u https://colorado.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-0-8176-8170-8  |z Full Text (via Springer) 
907 |a .b79855945  |b 07-02-19  |c 06-01-15 
998 |a web  |b 05-01-17  |c f  |d b   |e -  |f eng  |g mau  |h 0  |i 1 
907 |a .b79855945  |b 05-09-17  |c 06-01-15 
915 |a K 
956 |a Springer e-books 
956 |b Springer Nature - Springer Book Archive - Springer Mathematics 
956 |a Mathematics 
956 |a Springer e-books: Archive 
999 f f |i c6d47007-f28c-50cd-827a-15f70e897587  |s cd94ba9d-f519-5b25-aaa1-496f22bc80c6 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e QA564 .A7325 2004  |h Library of Congress classification  |i Ebooks, Prospector  |n 1