The commutant lifting approach to interpolation problems [electronic resource] / Ciprian Foias, Arthur E. Frazho.

Classical H̃ interpolation theory was conceived at the beginning of the century by C. Caratheodory, L. Fejer and I. Schur. The basic method, due to Schur, in solving these problems consists in applying the Möbius transform to peel off the data. In 1967, D. Sarason encompassed these classical interpo...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via Springer)
Main Author: Foiaş, Ciprian
Other Authors: Frazho, Arthur E., 1950-
Format: Electronic eBook
Language:English
Published: Basel ; Boston : Birkhäuser, 1990.
Series:Operator theory, advances and applications ; v. 44.
Subjects:

MARC

LEADER 00000cam a2200000xa 4500
001 b7985250
006 m o d
007 cr |||||||||||
008 101107s1990 sz ob 001 0 eng d
005 20250123225000.4
019 |a 624476397  |a 760304207  |a 1001511011  |a 1012459794  |a 1083460498  |a 1086527492  |a 1113005559 
020 |a 9783034877121  |q (electronic bk.) 
020 |a 3034877129  |q (electronic bk.) 
020 |a 9783034877145  |q (print) 
020 |a 3034877145  |q (print) 
020 |z 0817624619  |q (U.S. ;  |q alk. paper) 
020 |z 9780817624613  |q (U.S. ;  |q alk. paper) 
020 |z 3764324619 
020 |z 9783764324612 
024 7 |a 10.1007/978-3-0348-7712-1 
035 |a (OCoLC)spr680219819 
035 |a (OCoLC)680219819  |z (OCoLC)624476397  |z (OCoLC)760304207  |z (OCoLC)1001511011  |z (OCoLC)1012459794  |z (OCoLC)1083460498  |z (OCoLC)1086527492  |z (OCoLC)1113005559 
037 |a spr978-3-0348-7712-1 
040 |a OCLCE  |b eng  |e pn  |c OCLCE  |d OCLCQ  |d OCLCF  |d OCLCQ  |d GW5XE  |d UA@  |d COO  |d OCLCQ  |d UAB  |d OCLCQ  |d U3W  |d AU@  |d OCLCO  |d EBLCP  |d OCLCQ  |d LEAUB  |d OCLCQ  |d UKBTH  |d OCLCQ 
042 |a dlr 
049 |a GWRE 
050 4 |a QA281  |b .F65 1990 
100 1 |a Foiaş, Ciprian.  |0 http://id.loc.gov/authorities/names/n84804258  |1 http://isni.org/isni/0000000108818702. 
245 1 4 |a The commutant lifting approach to interpolation problems  |h [electronic resource] /  |c Ciprian Foias, Arthur E. Frazho. 
260 |a Basel ;  |a Boston :  |b Birkhäuser,  |c 1990. 
300 |a 1 online resource (xxiii, 632 pages) 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
347 |a text file. 
347 |b PDF. 
490 1 |a Operator theory, advances and applications ;  |v vol. 44. 
504 |a Includes bibliographical references ([599]-623) and index. 
505 0 |a I. Analysis of the Caratheodory Interpolation Problem -- II. Analysis of the Caratheodory Interpolation Problem for Positive-Real Functions -- III. Schur Numbers, Geophysics and Inverse Scattering Problems -- IV. Contractive Expansions on Euclidian and Hilbert Space -- V. Contractive One Step Intertwining Liftings -- VI. Isometric and Unitary Dilations -- VII. The Commutant Lifting Theorem -- VIII. Geometric Applications of the Commutant lifting Theorem -- IX. H? Optimization and Functional Models -- X. Some Classical Interpolation Problems -- XI. Interpolation as a Momentum Problem -- XII. Numerical Algorithms for H? Optimization in Control Theory -- XIII. Inverse Scattering Algorithms for the Commutant Lifting Theorem -- XIV. The Schur Representation -- XV. A Geometric Approach to Positive Definite Sequences -- XVI. Positive Definite Block Matrices -- XVII. A Physical Basis for the Layered Medium Model -- References -- Notation. 
520 |a Classical H̃ interpolation theory was conceived at the beginning of the century by C. Caratheodory, L. Fejer and I. Schur. The basic method, due to Schur, in solving these problems consists in applying the Möbius transform to peel off the data. In 1967, D. Sarason encompassed these classical interpolation problems in a representation theorem of operators commuting with special contractions. Shortly after that, in 1968, B. Sz. Nagy and C. Foias obtained a purely geometrical extension of Sarason's results. Actually, their result states that operators intertwining restrictions of co-isometries can be extended, by preserving their norm, to operators intertwining these co-isometries; starring with R.G. Douglas, P.S. Muhly and C. Pearcy, this is referred to as the commutant lifting theorem. In 1957, Z. Nehari considered an L ̃ interpolation problern which in turn encompassed the same classical interpolation problems, as well as the computation of the distance of a function f in L ̃ to H̃. At about the sametime as Sarason's work, V.M. 
546 |a English. 
588 0 |a Print version record. 
650 0 |a Interpolation.  |0 http://id.loc.gov/authorities/subjects/sh85067492 
650 0 |a Lifting theory.  |0 http://id.loc.gov/authorities/subjects/sh85076864 
650 7 |a Interpolation.  |2 fast  |0 fst00977456 
650 7 |a Lifting theory.  |2 fast  |0 fst00998451 
700 1 |a Frazho, Arthur E.,  |d 1950-  |0 http://id.loc.gov/authorities/names/n90611491  |1 http://isni.org/isni/0000000109352609. 
776 0 8 |i Print version:  |a Foiaş, Ciprian.  |t Commutant lifting approach to interpolation problems.  |d Basel ; Boston : Birkhäuser, 1990  |w (DLC) 90032571  |w (OCoLC)21197008. 
856 4 0 |u https://colorado.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-0348-7712-1  |z Full Text (via Springer) 
830 0 |a Operator theory, advances and applications ;  |v v. 44.  |0 http://id.loc.gov/authorities/names/n42017868 
907 |a .b79852506  |b 04-01-21  |c 06-01-15 
915 |a - 
998 |a web  |b 03-31-21  |c b  |d b   |e -  |f eng  |g sz   |h 4  |i 1 
907 |a .b79852506  |b 03-31-21  |c 06-01-15 
944 |a MARS - RDA ENRICHED 
956 |a Mathematics 
956 |a Springer e-books: Archive 
956 |a Springer e-books 
956 |b Springer Nature - Springer Book Archive - Springer Mathematics 
999 f f |i dd9bbeca-4dc6-57c2-b856-ef266e2545e8  |s fb53a022-d259-5afa-9c4d-c13c69381be7 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e QA281 .F65 1990  |h Library of Congress classification  |i Ebooks, Prospector  |n 1