Development of grout formulations for 106-AN waste [electronic resource] : Mixture-experiment results and analysis. Volume 2, Data presentation.

Twenty potential ingredients were identified for use in developing a 106-AN grout formulation, and 18 were subsequently obtained and tested. Four ingredients: Type II-LA (moderate heat of hydration) Portland cement, Class F fly ash, attapulgite 150 drilling clay, and ground air-cooled blast-furnace...

Full description

Saved in:
Bibliographic Details
Online Access: Online Access
Corporate Author: Oak Ridge National Laboratory (Researcher)
Format: Government Document Electronic eBook
Language:English
Published: Washington, D.C. : Oak Ridge, Tenn. : United States. Dept. of Energy ; distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 1993.
Subjects:
Description
Summary:Twenty potential ingredients were identified for use in developing a 106-AN grout formulation, and 18 were subsequently obtained and tested. Four ingredients: Type II-LA (moderate heat of hydration) Portland cement, Class F fly ash, attapulgite 150 drilling clay, and ground air-cooled blast-furnace slag (GABFS) -- were selected for developing the 106-AN grout formulations. A mixture experiment was designed and conducted around the following formulation: 2.5 lb of cement per gallon, 1.2 lb of fly ash per gallon, 0.8 lb of attapulgite per gallon, and 3.5 lb of GABFS per gallon. Reduced empirical models were generated from the results of the mixture experiment. These models were used to recommend several grout formulations for 106-AN. Westinghouse Hanford Company selected one of these formulations to be verified for use with 106-AN and a backup formulation in case problems arise with the first choice. This report presents the mixture-experimental results and leach data.
Item Description:Published through the Information Bridge: DOE Scientific and Technical Information.
09/01/1993.
"ornl/tm--12437/v2"
"DE94001090"
McDaniel, E.W.; Anderson, C.M.; Spence, R.D.; Lokken, R.O.; Piepel, G.F.
Physical Description:577 p. : digital, PDF file.