Binary rf pulse compression experiment at SLAC [electronic resource]

Using rf pulse compression it will be possible to boost the 50- to 100-MW output expected from high-power microwave tubes operating in the 10- to 20-GHz frequency range, to the 300- to 1000-MW level required by the next generation of high-gradient linacs for linear for linear colliders. A high-power...

Full description

Saved in:
Bibliographic Details
Online Access: Online Access
Corporate Author: Stanford Linear Accelerator Center (Researcher)
Format: Government Document Electronic eBook
Language:English
Published: Washington, D.C : Oak Ridge, Tenn. : United States. Dept. of Energy. Office of Energy Research ; distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 1990.
Subjects:
Description
Summary:Using rf pulse compression it will be possible to boost the 50- to 100-MW output expected from high-power microwave tubes operating in the 10- to 20-GHz frequency range, to the 300- to 1000-MW level required by the next generation of high-gradient linacs for linear for linear colliders. A high-power X-band three-stage binary rf pulse compressor has been implemented and operated at the Stanford Linear Accelerator Center (SLAC). In each of three successive stages, the rf pulse-length is compressed by half, and the peak power is approximately doubled. The experimental results presented here have been obtained at low-power (1-kW) and high-power (15-MW) input levels in initial testing with a TWT and a klystron. Rf pulses initially 770 nsec long have been compressed to 60 nsec. Peak power gains of 1.8 per stage, and 5.5 for three stages, have been measured. This corresponds to a peak power compression efficiency of about 90% per stage, or about 70% for three stages, consistent with the individual component losses. The principle of operation of a binary pulse compressor (BPC) is described in detail elsewhere. We recently have implemented and operated at SLAC a high-power (high-vacuum) three-stage X-band BPC. First results from the high-power three-stage BPC experiment are reported here.
Item Description:Published through the Information Bridge: DOE Scientific and Technical Information.
06/01/1990.
"slac-pub-5277"
" conf-900603--21"
"DE90013582"
2. European particle accelerator conference, Nice (France), 11-16 Jun 1990.
Miller, R.H.; Wilson, P.B.; Farkas, Z.D.; Lavine, T.L.; Spalek, G.; Menegat, A.; Nantista, C.
Physical Description:Pages: (3 p) : digital, PDF file.