Bayesian and frequentist regression methods / Jon Wakefield.

Bayesian and Frequentist Regression Methods provides a modern account of both Bayesian and frequentist methods of regression analysis. Many texts cover one or the other of the approaches, but this is the most comprehensive combination of Bayesian and frequentist methods that exists in one place. The...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via Springer)
Main Author: Wakefield, Jon
Format: eBook
Language:English
Published: New York, NY : Springer, ©2013.
Series:Springer series in statistics.
Subjects:

MARC

LEADER 00000cam a2200000Ka 4500
001 b7276293
006 m o d
007 cr |||||||||||
008 130110s2013 nyu ob 001 0 eng d
005 20240423171029.9
020 |a 9781441909251  |q (electronic bk.) 
020 |a 1441909257  |q (electronic bk.) 
020 |z 9781441909244 
035 |a (OCoLC)spr823839429 
035 |a (OCoLC)823839429 
037 |a spr10.1007/978-1-4419-0925-1 
040 |a GW5XE  |b eng  |e pn  |c GW5XE  |d COO  |d ZMC  |d YDXCP  |d SNK  |d OCLCF  |d TPH  |d OCLCQ 
049 |a GWRE 
050 4 |a QA278.2  |b .W35 2013 
100 1 |a Wakefield, Jon. 
245 1 0 |a Bayesian and frequentist regression methods /  |c Jon Wakefield. 
264 1 |a New York, NY :  |b Springer,  |c ©2013. 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
490 1 |a Springer series in statistics,  |x 0172-7397. 
505 0 0 |t Inferential Approaches --  |t Frequentist Inference --  |t Bayesian Inference --  |t Hypothesis Testing and Variable Selection --  |t Independent Data --  |t Linear Models --  |t General Regression Models --  |t Binary Data Models --  |t Dependent Data --  |t Linear Models --  |t General Regression Models --  |t Nonparametric Modeling --  |t Preliminaries for Nonparametric Regression --  |t Spline and Kernel Methods --  |t Nonparametric Regression with Multiple Predictors --  |g Appendices --  |t Differentiation of Matrix Expressions --  |t Matrix Results --  |t Some Linear Algebra --  |t Probability Distributions and Generating Functions --  |t Functions of Normal Random Variables --  |t Some Results from Classical Statistics --  |t Basic Large Sample Theory. 
504 |a Includes bibliographical references and index. 
520 |a Bayesian and Frequentist Regression Methods provides a modern account of both Bayesian and frequentist methods of regression analysis. Many texts cover one or the other of the approaches, but this is the most comprehensive combination of Bayesian and frequentist methods that exists in one place. The two philosophical approaches to regression methodology are featured here as complementary techniques, with theory and data analysis providing supplementary components of the discussion. In particular, methods are illustrated using a variety of data sets. The majority of the data sets are drawn from biostatistics but the techniques are generalizable to a wide range of other disciplines. While the philosophy behind each approach is discussed, the book is not ideological in nature and an emphasis is placed on practical application. It is shown that, in many situations, careful application of the respective approaches can lead to broadly similar conclusions. To use this text, the reader requires a basic understanding of calculus and linear algebra, and introductory courses in probability and statistical theory. The book is based on the author's experience teaching a graduate sequence in regression methods. The book website contains all of the code to reproduce all of the analyses and figures contained in the book. 
650 0 |a Regression analysis  |x Mathematical models. 
650 0 |a Bayesian statistical decision theory. 
650 7 |a Bayesian statistical decision theory.  |2 fast  |0 (OCoLC)fst00829019. 
650 7 |a Regression analysis  |x Mathematical models.  |2 fast  |0 (OCoLC)fst01093277. 
830 0 |a Springer series in statistics. 
856 4 0 |u https://colorado.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-1-4419-0925-1  |z Full Text (via Springer) 
907 |a .b72762937  |b 07-02-19  |c 01-30-13 
998 |a web  |b 05-01-17  |c f  |d b   |e -  |f eng  |g nyu  |h 0  |i 1 
907 |a .b72762937  |b 05-09-17  |c 01-30-13 
915 |a K 
956 |a Springer e-books 
956 |b Springer Nature - Springer Mathematics and Statistics eBooks 2013 English International 
956 |b Springer Nature - Springer Mathematics and Statistics eBooks 2013 English International 
999 f f |i c19920a2-097a-554d-96a2-d0453ed86c49  |s a3ac8606-44d9-5187-a8f8-34c390edbdc3 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e QA278.2 .W35 2013  |h Library of Congress classification  |i Ebooks, Prospector  |n 1