Prospects for high energy heavy ion accelerators [electronic resource]
The acceleration of heavy ions to relativistic energies (T greater than or equal to 1 GeV/amu) at the beam intensities required for fundamental research falls clearly in the domain of synchrotons. Up to date, such beams have been obtained from machines originally designed as proton acccelerators by...
Saved in:
Online Access: |
Online Access |
---|---|
Corporate Authors: | , |
Format: | Government Document Electronic eBook |
Language: | English |
Published: |
Berkeley, Calif. : Oak Ridge, Tenn. :
Lawrence Berkeley National Laboratory ; distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy,
1979.
|
Subjects: |
Summary: | The acceleration of heavy ions to relativistic energies (T greater than or equal to 1 GeV/amu) at the beam intensities required for fundamental research falls clearly in the domain of synchrotons. Up to date, such beams have been obtained from machines originally designed as proton acccelerators by means of modified RF-programs, improved vacuum and, most importantly, altered or entirely new injector systems. Similarly, for the future, substantial changes in synchrotron design itself are not foreseen, but rather the judicious application and development of presently known principles and technologies and a choice of parameters optimized with respect to the peculiarities of heavy ions. The low charge to mass ratio, q/A, of very heavy ions demands that superconducting magnets be considered in the interest of the highest energies for a given machine size. Injector brightness will continue to be of highest importance, and although space charge effects such as tune shifts will be increased by a factor q²/A compared with protons, advances in linac current and brightness, rather than substantially higher energies are required to best utilize a given synchrotron acceptance. However, high yeilds of fully stripped, very heavy ions demand energies of a few hundred MeV/amu, thus indicating the need for a booster synchrotron, although for entirely different reasons than in proton facilities. Finally, should we consider colliding beams, the high charge of heavy ions will impose severe current limitations and put high demands on system design with regard to such quantities as e.g., wall impedances or the ion induced gas desorption rate, and advanced concepts such as low ..beta.. insertions with suppressed dispersion and very small crossing angles will be essential to the achievement of useful luminosities. |
---|---|
Item Description: | Published through the Information Bridge: DOE Scientific and Technical Information. 03/01/1979. "lbl-8899" " conf-790327-110" IEEE particle accelerator conference, San Francisco, CA, USA, 12 Mar 1979. Leemann, C. |
Physical Description: | Pages: 9 : digital, PDF file. |