MAGNESIUM MONO POTASSIUM PHOSPHATE GROUT FOR P-REACTOR VESSEL IN-SITU DECOMISSIONING [electronic resource]

The objective of this report is to document laboratory testing of magnesium mono potassium phosphate grouts for P-Reactor vessel in-situ decommissioning. Magnesium mono potassium phosphate cement-based grout was identified as candidate material for filling (physically stabilizing) the 105-P Reactor...

Full description

Saved in:
Bibliographic Details
Online Access: Online Access
Corporate Author: United States. Department of Energy. Savannah River Site (Researcher)
Format: Government Document Electronic eBook
Language:English
Published: Washington, D.C. : Oak Ridge, Tenn. : United States. Department of Energy ; distributed by the Office of Scientific and Technical Information, U.S. Department of Energy, 2011.
Subjects:
Description
Summary:The objective of this report is to document laboratory testing of magnesium mono potassium phosphate grouts for P-Reactor vessel in-situ decommissioning. Magnesium mono potassium phosphate cement-based grout was identified as candidate material for filling (physically stabilizing) the 105-P Reactor vessel (RV) because it is less alkaline than portland cement-based grout (pH of about 12.4). A less alkaline material (≤ 10.5) was desired to address a potential materials compatibility issue caused by corrosion of aluminum metal in highly alkaline environments such as that encountered in portland cement grouts. Information concerning access points into the P-Reactor vessel and amount of aluminum metal in the vessel is provided elsewhere. Fresh and cured properties were measured for: (1) commercially blended magnesium mono potassium phosphate packaged grouts, (2) commercially available binders blended with inert fillers at SRNL, (3) grouts prepared from technical grade MgO and KH₂PO₄ and inert fillers (quartz sands, Class F fly ash), and (4) Ceramicrete{reg_sign} magnesium mono potassium phosphate-based grouts prepared at Argonne National Laboratory. Boric acid was evaluated as a set retarder in the magnesium mono potassium phosphate mixes.
Item Description:Published through SciTech Connect.
01/05/2011.
"srnl-sti-2010-00333"
Langton, C.; Stefanko, D.