RMP Enhanced Transport and Rotation Screening in DIII-D Simulations [electronic resource]

The application of resonant magnetic perturbations (RMP) to DIII-D plasmas at low collisionality has achieved ELM suppression, primarily due to a pedestal density reduction. The mechanism of the enhanced particle transport is investigated in 3D MHD simulations with the NIMROD code. The simulations a...

Full description

Saved in:
Bibliographic Details
Online Access: Online Access
Corporate Author: Lawrence Livermore National Laboratory (Researcher)
Format: Government Document Electronic eBook
Language:English
Published: Washington, D.C : Oak Ridge, Tenn. : United States. Dept. of Energy ; distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2008.
Subjects:
Description
Summary:The application of resonant magnetic perturbations (RMP) to DIII-D plasmas at low collisionality has achieved ELM suppression, primarily due to a pedestal density reduction. The mechanism of the enhanced particle transport is investigated in 3D MHD simulations with the NIMROD code. The simulations apply realistic vacuum fields from the DIII-D I-coils, C-coils and measure intrinsic error fields to an EFIT reconstructed DIII-D equilibrium, and allow the plasma to respond to the applied fields while the fields are fixed at the boundary, which lies in the vacuum region. A non-rotating plasma amplifies the resonant components of the applied fields by factors of 2-5. The poloidal velocity forms E x B convection cells crossing the separatrix, which push particles into the vacuum region and reduce the pedestal density. Low toroidal rotation at the separatrix reduces the resonant field amplitudes, but does not strongly affect the particle pumpout. At higher separatrix rotation, the poloidal E x B velocity is reduced by half, while the enhanced particle transport is entirely eliminated. A high collisionality DIII-D equilibrium with an experimentally measured rotation profile serves as the starting point for a simulation with odd parity I-coil fields that can ultimately be compared with experimental results. All of the NIMROD results are compared with analytic error field theory.
Item Description:Published through the Information Bridge: DOE Scientific and Technical Information.
10/13/2008.
"llnl-conf-407830"
Presented at: 22nd IAEA-FEC, Geneva, Switzerland, Oct 13 - Oct 18, 2008.
Osborne, T; Evans, T; Fenstermacher, M; Lao, L; Snyder, P; Moyer, R; Izzo, V; Joseph, I.
Physical Description:PDF-file: 9 pages; size: 1.5 Mbytes.