Development of techniques in magnetic resonance and structural studies of the prion protein [electronic resource]

Magnetic resonance is the most powerful analytical tool used by chemists today. Its applications range from determining structures of large biomolecules to imaging of human brains. Nevertheless, magnetic resonance remains a relatively young field, in which many techniques are currently being develop...

Full description

Saved in:
Bibliographic Details
Online Access: Online Access (via OSTI)
Corporate Author: Lawrence Berkeley National Laboratory (Researcher)
Format: Government Document Electronic eBook
Language:English
Published: Washington, D.C. : Oak Ridge, Tenn. : United States. Department of Energy. ; distributed by the Office of Scientific and Technical Information, U.S. Department of Energy, 2000.
Subjects:

MARC

LEADER 00000nam a22000003u 4500
001 b6994209
003 CoU
005 20161227220157.4
006 m o d f
007 cr |||||||||||
008 170215e20000701||| om f0|||||eng|d
035 |a (TOE)ost970016 
035 |a (TOE)970016 
040 |a TOE  |c TOE 
049 |a GDWR 
072 7 |a 59  |2 edbsc 
086 0 |a E 1.99:lbnl--46421 
086 0 |a E 1.99:lbnl--46421 
088 |a lbnl--46421 
245 0 0 |a Development of techniques in magnetic resonance and structural studies of the prion protein  |h [electronic resource] 
260 |a Washington, D.C. :  |b United States. Department of Energy. ;  |a Oak Ridge, Tenn. :  |b distributed by the Office of Scientific and Technical Information, U.S. Department of Energy,  |c 2000. 
300 |a 230 p. :  |b digital, PDF file. 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
500 |a Published through SciTech Connect. 
500 |a 07/01/2000. 
500 |a "lbnl--46421" 
500 |a Hans-Marcus L. Bitter. 
520 3 |a Magnetic resonance is the most powerful analytical tool used by chemists today. Its applications range from determining structures of large biomolecules to imaging of human brains. Nevertheless, magnetic resonance remains a relatively young field, in which many techniques are currently being developed that have broad applications. In this dissertation, two new techniques are presented, one that enables the determination of torsion angles in solid-state peptides and proteins, and another that involves imaging of heterogenous materials at ultra-low magnetic fields. In addition, structural studies of the prion protein via solid-state NMR are described. More specifically, work is presented in which the dependence of chemical shifts on local molecular structure is used to predict chemical shift tensors in solid-state peptides with theoretical ab initio surfaces. These predictions are then used to determine the backbone dihedral angles in peptides. This method utilizes the theoretical chemicalshift tensors and experimentally determined chemical-shift anisotropies (CSAs) to predict the backbone and side chain torsion angles in alanine, leucine, and valine residues. Additionally, structural studies of prion protein fragments are described in which conformationally-dependent chemical-shift measurements were made to gain insight into the structural differences between the various conformational states of the prion protein. These studies are of biological and pathological interest since conformational changes in the prion protein are believed to cause prion diseases. Finally, an ultra-low field magnetic resonance imaging technique is described that enables imaging and characterization of heterogeneous and porous media. The notion of imaging gases at ultra-low fields would appear to be very difficult due to the prohibitively low polarization and spin densities as well as the low sensitivities of conventional Faraday coil detectors. However, Chapter 5 describes how gas imaging at ultra-low fields is realized by incorporating the high sensitivities of a dc superconducting quantum interference device (SQUID) with the high polarizations attainable through optica11y pumping <sup>129</sup>Xe gas. 
520 0 |a Magnetic Resonance Prion Protein. 
536 |b AC02-05CH11231. 
650 7 |a Chemical Shift.  |2 local. 
650 7 |a Conformational Changes.  |2 local. 
650 7 |a Diseases.  |2 local. 
650 7 |a Gases.  |2 local. 
650 7 |a Leucine.  |2 local. 
650 7 |a Magnetic Fields.  |2 local. 
650 7 |a Magnetic Resonance.  |2 local. 
650 7 |a Molecular Structure.  |2 local. 
650 7 |a Peptides.  |2 local. 
650 7 |a Polarization.  |2 local. 
650 7 |a Proteins.  |2 local. 
650 7 |a Pumping.  |2 local. 
650 7 |a Residues.  |2 local. 
650 7 |a Spin.  |2 local. 
650 7 |a Squid Devices.  |2 local. 
650 7 |a Torsion.  |2 local. 
650 7 |a Valine.  |2 local. 
650 7 |a Basic Biological Sciences.  |2 edbsc. 
710 2 |a Lawrence Berkeley National Laboratory.  |4 res. 
710 1 |a United States.  |b Department of Energy.  |4 spn. 
710 1 |a United States.  |b Department of Energy.  |b Office of Scientific and Technical Information.  |4 dst. 
856 4 0 |u http://www.osti.gov/scitech/biblio/970016  |z Online Access (via OSTI) 
907 |a .b69942092  |b 03-09-23  |c 03-31-12 
998 |a web  |b 02-15-17  |c f  |d m   |e p  |f eng  |g    |h 0  |i 4 
956 |a Information bridge 
999 f f |i 98bde9ea-f537-5a99-b4df-97d28890c71d  |s 9a85219e-b071-52dc-943b-2f95edc4473f 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e E 1.99:lbnl--46421  |h Superintendent of Documents classification  |i web  |n 1