DISPOSAL OF FLUIDIZED BED COMBUSTION ASH IN AN UNDERGROUND MINE TO CONTROL ACID MINE DRAINAGE AND SUBSIDENCE [electronic resource]

This project evaluated the technical, economic and environmental feasibility of filling abandoned underground mine voids with coal combustion byproducts. Success was measured in terms of technical feasibility of the approach (i.e. % void filling), cost, environmental benefits (acid mine drainage and...

Full description

Saved in:
Bibliographic Details
Online Access: Online Access
Corporate Authors: Federal Energy Technology Center (U.S.) (Researcher), National Energy Technology Laboratory (U.S.) (Researcher)
Format: Government Document Electronic eBook
Language:English
Published: Washington, D.C : Oak Ridge, Tenn. : United States. Dept. of Energy ; distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2000.
Subjects:
Description
Summary:This project evaluated the technical, economic and environmental feasibility of filling abandoned underground mine voids with coal combustion byproducts. Success was measured in terms of technical feasibility of the approach (i.e. % void filling), cost, environmental benefits (acid mine drainage and subsidence control) and environmental impacts (noxious ion release). Phase 1 of the project was completed in September 1995 and was concerned with the development of the grout and a series of predictive models. These models were verified through the Phase II field phase and will be further verified fin the large scale field demonstration of Phase III. The verification allows the results to be packaged in such a way that the technology can be easily adapted to different site conditions. Phase II was successfully completed with 1000 cubic yards of grout being injected into Anker Energy's Fairfax mine. The grout flowed over 600 feet from a single injection borehole. The grout achieved a compressive strength of over 1000 psi (twice the level that is needed to guarantee subsidence control). Phase III was a full scale test at Anker's eleven acre Longridge mine site. The CCB grout replaced what was an open mine void with a solid so that the groundwater tends to flow around and through the pillars rather than through the previously mined areas. The project has demonstrated that CCBs can be successfully disposed in underground mines. Additionally, the project has shown that filling an abandoned underground mine with CCBs can lead to the reduction and elimination of environmental problems associated with underground mining such as acid mine drainage and subsidence. The filling of the Longridge Mine with 43,000 cubic yards of CCB grout resulted in a 97% reduction in acid mine drainage coming from the mine.
Item Description:Published through the Information Bridge: DOE Scientific and Technical Information.
10/01/2000.
"fc21-94mc29244--25"
Unknown.
Physical Description:5 pages : digital, PDF file.