Interfacial chemistry in solvent extraction systems. Final report for the period June 1, 1994 - May 31, 1998 [electronic resource]

The interfacial chemistry that occurs in the liquid/liquid extraction of metals ions still remains very incompletely understood at the molecular level. The objective of this comprehensive research program has been to further the fundamental understanding of this complex chemistry by systematically i...

Full description

Saved in:
Bibliographic Details
Online Access: Online Access
Corporate Authors: Auburn University (Researcher), United States. Department of Energy. Oak Ridge Operations (Researcher)
Format: Government Document Electronic eBook
Language:English
Published: Washington, D.C. : Oak Ridge, Tenn. : United States. Dept. of Energy. Office of Energy Research ; distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2000.
Subjects:

MARC

LEADER 00000nam a22000003u 4500
001 b6982267
003 CoU
005 20080205000000.0
006 m d f
007 cr |||||||||||
008 110824e20000301dcu ot f0|||||eng|d
035 |a (TOE)ost758937 
035 |a (TOE)758937 
040 |a TOE  |c TOE 
049 |a GDWR 
072 7 |a 37  |2 edbsc 
086 0 |a E 1.99:doe/er/13357-29 
086 0 |a E 1.99:doe/er/13357-29 
088 |a doe/er/13357-29 
245 0 0 |a Interfacial chemistry in solvent extraction systems. Final report for the period June 1, 1994 - May 31, 1998  |h [electronic resource] 
260 |a Washington, D.C. :  |b United States. Dept. of Energy. Office of Energy Research ;  |a Oak Ridge, Tenn. :  |b distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy,  |c 2000. 
300 |a 11 pages :  |b digital, PDF file. 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
500 |a Published through the Information Bridge: DOE Scientific and Technical Information. 
500 |a 03/01/2000. 
500 |a "doe/er/13357-29" 
500 |a Neuman, Ronald D. 
513 |a Final;  |b 06/01/1994 - 05/31/1998. 
520 3 |a The interfacial chemistry that occurs in the liquid/liquid extraction of metals ions still remains very incompletely understood at the molecular level. The objective of this comprehensive research program has been to further the fundamental understanding of this complex chemistry by systematically investigating the interfacial behavior of extraction reagents and their interactions with metal ions at both macroscopic (liquid/liquid) and microscopic (reversed micelles) interfaces. Although the importance of the macroscopic interface is well recognized, it is less appreciated that microscopic interfaces, i.e., association microstructure such as reversed micelles, are often present under practical conditions and play a key role in liquid/liquid extraction. An improved knowledge of the interfacial behavior of extractant molecules is of the utmost importance as it relates to the efficacy (extent, selectivity and rate) of the extraction process. During the recent grant period the authors have more intensively investigated the physicochemical nature of metal-extractant aggregates (or microscopic interfaces) in the organic phase of acidic organophosphorus extraction systems from the perspective of colloid and surface science. Since industrial extraction systems are very complex, the authors emphasized the study of the aggregation behavior in model extraction systems of pure metal salts of bis(2-ethylhexyl)phosphoric acid (HDEHP) (e.g., NaDEHP, Ni(DEHP)₂ CO(DEHP)₂) or bis(2-ethylhexyl) sulfosuccinate, whose sodium salt (AOT) is the classical surfactant used often in studies of the structure and properties of reversed micelles, to eliminate any possible uncertainty in the metal-extractant complex composition. This approach evolved into a new initiative that utilized molecular modeling in order to clarify the molecular structure of metal-extractant micellar aggregates for which information is very difficult to obtain from direct experimental measurements. Significantly, they have obtained a number of novel findings that are contrary to conventional views of both the fundamentals of reversed micellar formation and growth as well as liquid/liquid extraction. These findings take on additional importance in view of the general increasing interest in micellar enhanced separation processes. In addition, they have continued to make significant progress in their efforts to develop new methodologies for characterization of the physicochemical nature of the macroscopic liquid/liquid interface by using advanced laser techniques. The research productivity has been nothing short of excellent. This is especially so in view of the very difficult and challenging measurements that they proposed for investigating the structure and dynamics of the liquid/liquid interface, as well as the accomplishments in developing totally new concepts such as the open water-channel model of reversed micelles. Eighteen (18) papers and abstracts have been published since the submittal of the last three-year DOE progress report. Furthermore, several additional papers are in various stages of publication and preparation. In addition, they have given 12 presentations describing various aspects of the liquid/liquid extraction and related research activities. 
536 |b FG05-85ER13357. 
650 7 |a Molecular Structure.  |2 local. 
650 7 |a Surfactants.  |2 local. 
650 7 |a Micellar Systems.  |2 local. 
650 7 |a Interfaces.  |2 local. 
650 7 |a Metals.  |2 local. 
650 7 |a Separation Processes.  |2 local. 
650 7 |a Microstructure.  |2 local. 
650 7 |a Solvent Extraction.  |2 local. 
650 7 |a Molecular Models.  |2 local. 
650 7 |a Inorganic, Organic, Physical And Analytical Chemistry.  |2 edbsc. 
710 2 |a Auburn University.  |4 res. 
710 1 |a United States.  |b Department of Energy.  |b Office of Energy Research.  |4 spn. 
710 1 |a United States.  |b Department of Energy.  |b Oak Ridge Operations.  |4 res. 
710 1 |a United States.  |b Department of Energy.  |b Office of Scientific and Technical Information.  |4 dst. 
856 4 0 |u http://www.osti.gov/servlets/purl/758937-5fVher/webviewable/  |z Online Access 
907 |a .b69822670  |b 03-06-23  |c 03-31-12 
998 |a web  |b 03-31-12  |c f  |d m   |e p  |f eng  |g dcu  |h 0  |i 1 
956 |a Information bridge 
999 f f |i 76e6a031-0d06-5d70-85eb-1e3b25fec425  |s 7344111d-8b5f-5555-9926-f466135d75d6 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e E 1.99:doe/er/13357-29  |h Superintendent of Documents classification  |i web  |n 1