|
|
|
|
LEADER |
00000cam a2200000Ia 4500 |
001 |
b6603820 |
003 |
CoU |
008 |
101018s2011 si a b 001 0 eng d |
005 |
20231212005116.6 |
020 |
|
|
|a 9789814291248 (hbk.)
|
020 |
|
|
|a 9814291242 (hbk.)
|
035 |
|
|
|a (OCoLC)ocn700137424
|
035 |
|
|
|a (OCoLC)700137424
|
040 |
|
|
|a QCL
|b eng
|c QCL
|d CUS
|d YDXCP
|d CDX
|d UPM
|d CTB
|
049 |
|
|
|a CODA
|
050 |
|
4 |
|a QA649
|b .A66 2011
|
100 |
1 |
|
|a Anciaux, Henri.
|0 http://id.loc.gov/authorities/names/no2011054615
|1 http://isni.org/isni/0000000118962484.
|
245 |
1 |
0 |
|a Minimal submanifolds in pseudo-Riemannian geometry /
|c Henri Anciaux.
|
260 |
|
|
|a Singapore ;
|a Hackensack, NJ :
|b World Scientific,
|c 2011.
|
300 |
|
|
|a xv, 167 pages :
|b illustrations ;
|c 24 cm.
|
336 |
|
|
|a text
|b txt
|2 rdacontent.
|
337 |
|
|
|a unmediated
|b n
|2 rdamedia.
|
338 |
|
|
|a volume
|b nc
|2 rdacarrier.
|
504 |
|
|
|a Includes bibliographical references (pages 161-164) and index.
|
505 |
0 |
|
|a Machine generated contents note: 1.Submanifolds in pseudo-Riemannian geometry -- 1.1.Pseudo-Riemannian manifolds -- 1.1.1.Pseudo-Riemannian metrics -- 1.1.2.Structures induced by the metric -- 1.1.3.Calculus on a pseudo-Riemannian manifold -- 1.2.Submanifolds -- 1.2.1.The tangent and the normal spaces -- 1.2.2.Intrinsic and extrinsic structures of a submanifold -- 1.2.3.One-dimensional submanifolds: Curves -- 1.2.4.Submanifolds of co-dimension one: Hypersurfaces -- 1.3.The variation formulae for the volume -- 1.3.1.Variation of a submanifold -- 1.3.2.The first variation formula -- 1.3.3.The second variation formula -- 1.4.Exercises -- 2.Minimal surfaces in pseudo-Euclidean space -- 2.1.Intrinsic geometry of surfaces -- 2.2.Graphs in Minkowski space -- 2.3.The classification of ruled, minimal surfaces -- 2.4.Weierstrass representation for minimal surfaces -- 2.4.1.The definite case -- 2.4.2.The indefinite case -- 2.4.3.A remark on the regularity of minimal surfaces -- 2.5.Exercises -- 3.Equivariant minimal hypersurfaces in space forms -- 3.1.The pseudo-Riemannian space forms -- 3.2.Equivariant minimal hypersurfaces in pseudo-Euclidean space -- 3.2.1.Equivariant hypersurfaces in pseudo-Euclidean space -- 3.2.2.The minimal equation -- 3.2.3.The definite case (ε,ε') = (1,1) -- 3.2.4.The indefinite positive case (ε,ε') = (-1,1) -- 3.2.5.The indefinite negative case (ε,ε') = (-1,-1) -- 3.2.6.Conclusion -- 3.3.Equivariant minimal hypersurfaces in pseudo-space forms -- 3.3.1.Totally umbilic hypersurfaces in pseudo-space forms -- 3.3.2.Equivariant hypersurfaces in pseudo-space forms -- 3.3.3.Totally geodesic and isoparametric solutions -- 3.3.4.The spherical case (ε,ε',ε") = (1,1,1) -- 3.3.5.The "elliptic hyperbolic" case (ε,ε',ε") = (1,-1,-1) -- 3.3.6.The "hyperbolic hyperbolic" case (ε,ε',ε") = (-1,-1,1) -- 3.3.7.The "elliptic" de Sitter case (ε,ε',ε") = (-1,1,1) -- 3.3.8.The "hyperbolic" de Sitter case (ε,ε',ε") = (1,-1,1) -- 3.3.9.Conclusion -- 3.4.Exercises -- 4.Pseudo-Kahler manifolds -- 4.1.The complex pseudo-Euclidean space -- 4.2.The general definition -- 4.3.Complex space forms -- 4.3.1.The case of dimension n = 1 -- 4.4.The tangent bundle of a psendo-Kahler manifold -- 4.4.1.The canonical symplectic structure of the cotangent bundle TM -- 4.4.2.An almost complex structure on the tangent bundle TM of a manifold equipped with an affine connection -- 4.4.3.Identifying TM and TM and the Sasaki metric -- 4.4.4.A complex structure on the tangent bundle of a pseudo-Kahler manifold -- 4.4.5.Examples -- 4.5.Exercises -- 5.Complex and Lagrangian submanifolds in pseudo-Kahler manifolds -- 5.1.Complex submanifolds -- 5.2.Lagrangian submanifolds -- 5.3.Minimal Lagrangian surfaces in C2 with neutral metric -- 5.4.Minimal Lagrangian submanifolds in Cn -- 5.4.1.Lagrangian graphs -- 5.4.2.Equivariant Lagrangian submanifolds -- 5.4.3.Lagrangian submanifolds from evolving quadrics -- 5.5.Minimal Lagrangian submanifols in complex space forms -- 5.5.1.Lagrangian and Legendrian submanifolds -- 5.5.2.Equivariant Legendrian submanifolds in odd-dimensional space forms -- 5.5.3.Minimal equivariant Lagrangian submanifolds in complex space forms -- 5.6.Minimal Lagrangian surfaces in the tangent bundle of a Riemannian surface -- 5.6.1.Rank one Lagrangian surfaces -- 5.6.2.Rank two Lagrangian surfaces -- 5.7.Exercises -- 6.Minimizing properties of minimal submanifolds -- 6.1.Minimizing submanifolds and calibrations -- 6.1.1.Hypersurfaces in pseudo-Euclidean space -- 6.1.2.Complex submanifolds in pseudo-Kahler manifolds -- 6.1.3.Minimal Lagrangian submanifolds in complex pseudo-Euclidean space -- 6.2.Non-minimizing submanifolds.
|
583 |
1 |
|
|a committed to retain
|c 20230101
|d 20480101
|5 CoU
|f Alliance Shared Trust
|u https://www.coalliance.org/shared-print-archiving-policies.
|
650 |
|
0 |
|a Riemannian manifolds.
|0 http://id.loc.gov/authorities/subjects/sh85114045.
|
650 |
|
0 |
|a Minimal submanifolds.
|0 http://id.loc.gov/authorities/subjects/sh85129486.
|
907 |
|
|
|a .b66038200
|b 03-20-20
|c 03-03-11
|
998 |
|
|
|a eng
|b 07-12-11
|c a
|d m
|e -
|f eng
|g si
|h 0
|i 1
|
944 |
|
|
|a MARS - RDA ENRICHED
|
907 |
|
|
|a .b66038200
|b 11-27-14
|c 03-03-11
|
907 |
|
|
|a .b66038200
|b 07-12-11
|c 03-03-11
|
946 |
|
|
|a amt
|
999 |
f |
f |
|i 1b8d2a4d-449f-5d08-a242-797e0e9b0138
|s 0cee9204-5e01-5dc8-a8cc-808b9495b0da
|
952 |
f |
f |
|p Can circulate
|a University of Colorado Boulder
|b Boulder Campus
|c Offsite
|d PASCAL Offsite
|e QA649 .A66 2011
|h Library of Congress classification
|i book
|m P204312214008
|n 1
|