Minimal submanifolds in pseudo-Riemannian geometry / Henri Anciaux.

Saved in:
Bibliographic Details
Main Author: Anciaux, Henri
Format: Book
Language:English
Published: Singapore ; Hackensack, NJ : World Scientific, 2011.
Subjects:

MARC

LEADER 00000cam a2200000Ia 4500
001 b6603820
003 CoU
008 101018s2011 si a b 001 0 eng d
005 20231212005116.6
020 |a 9789814291248 (hbk.) 
020 |a 9814291242 (hbk.) 
035 |a (OCoLC)ocn700137424 
035 |a (OCoLC)700137424 
040 |a QCL  |b eng  |c QCL  |d CUS  |d YDXCP  |d CDX  |d UPM  |d CTB 
049 |a CODA 
050 4 |a QA649  |b .A66 2011 
100 1 |a Anciaux, Henri.  |0 http://id.loc.gov/authorities/names/no2011054615  |1 http://isni.org/isni/0000000118962484. 
245 1 0 |a Minimal submanifolds in pseudo-Riemannian geometry /  |c Henri Anciaux. 
260 |a Singapore ;  |a Hackensack, NJ :  |b World Scientific,  |c 2011. 
300 |a xv, 167 pages :  |b illustrations ;  |c 24 cm. 
336 |a text  |b txt  |2 rdacontent. 
337 |a unmediated  |b n  |2 rdamedia. 
338 |a volume  |b nc  |2 rdacarrier. 
504 |a Includes bibliographical references (pages 161-164) and index. 
505 0 |a Machine generated contents note: 1.Submanifolds in pseudo-Riemannian geometry -- 1.1.Pseudo-Riemannian manifolds -- 1.1.1.Pseudo-Riemannian metrics -- 1.1.2.Structures induced by the metric -- 1.1.3.Calculus on a pseudo-Riemannian manifold -- 1.2.Submanifolds -- 1.2.1.The tangent and the normal spaces -- 1.2.2.Intrinsic and extrinsic structures of a submanifold -- 1.2.3.One-dimensional submanifolds: Curves -- 1.2.4.Submanifolds of co-dimension one: Hypersurfaces -- 1.3.The variation formulae for the volume -- 1.3.1.Variation of a submanifold -- 1.3.2.The first variation formula -- 1.3.3.The second variation formula -- 1.4.Exercises -- 2.Minimal surfaces in pseudo-Euclidean space -- 2.1.Intrinsic geometry of surfaces -- 2.2.Graphs in Minkowski space -- 2.3.The classification of ruled, minimal surfaces -- 2.4.Weierstrass representation for minimal surfaces -- 2.4.1.The definite case -- 2.4.2.The indefinite case -- 2.4.3.A remark on the regularity of minimal surfaces -- 2.5.Exercises -- 3.Equivariant minimal hypersurfaces in space forms -- 3.1.The pseudo-Riemannian space forms -- 3.2.Equivariant minimal hypersurfaces in pseudo-Euclidean space -- 3.2.1.Equivariant hypersurfaces in pseudo-Euclidean space -- 3.2.2.The minimal equation -- 3.2.3.The definite case (ε,ε') = (1,1) -- 3.2.4.The indefinite positive case (ε,ε') = (-1,1) -- 3.2.5.The indefinite negative case (ε,ε') = (-1,-1) -- 3.2.6.Conclusion -- 3.3.Equivariant minimal hypersurfaces in pseudo-space forms -- 3.3.1.Totally umbilic hypersurfaces in pseudo-space forms -- 3.3.2.Equivariant hypersurfaces in pseudo-space forms -- 3.3.3.Totally geodesic and isoparametric solutions -- 3.3.4.The spherical case (ε,ε',ε") = (1,1,1) -- 3.3.5.The "elliptic hyperbolic" case (ε,ε',ε") = (1,-1,-1) -- 3.3.6.The "hyperbolic hyperbolic" case (ε,ε',ε") = (-1,-1,1) -- 3.3.7.The "elliptic" de Sitter case (ε,ε',ε") = (-1,1,1) -- 3.3.8.The "hyperbolic" de Sitter case (ε,ε',ε") = (1,-1,1) -- 3.3.9.Conclusion -- 3.4.Exercises -- 4.Pseudo-Kahler manifolds -- 4.1.The complex pseudo-Euclidean space -- 4.2.The general definition -- 4.3.Complex space forms -- 4.3.1.The case of dimension n = 1 -- 4.4.The tangent bundle of a psendo-Kahler manifold -- 4.4.1.The canonical symplectic structure of the cotangent bundle TM -- 4.4.2.An almost complex structure on the tangent bundle TM of a manifold equipped with an affine connection -- 4.4.3.Identifying TM and TM and the Sasaki metric -- 4.4.4.A complex structure on the tangent bundle of a pseudo-Kahler manifold -- 4.4.5.Examples -- 4.5.Exercises -- 5.Complex and Lagrangian submanifolds in pseudo-Kahler manifolds -- 5.1.Complex submanifolds -- 5.2.Lagrangian submanifolds -- 5.3.Minimal Lagrangian surfaces in C2 with neutral metric -- 5.4.Minimal Lagrangian submanifolds in Cn -- 5.4.1.Lagrangian graphs -- 5.4.2.Equivariant Lagrangian submanifolds -- 5.4.3.Lagrangian submanifolds from evolving quadrics -- 5.5.Minimal Lagrangian submanifols in complex space forms -- 5.5.1.Lagrangian and Legendrian submanifolds -- 5.5.2.Equivariant Legendrian submanifolds in odd-dimensional space forms -- 5.5.3.Minimal equivariant Lagrangian submanifolds in complex space forms -- 5.6.Minimal Lagrangian surfaces in the tangent bundle of a Riemannian surface -- 5.6.1.Rank one Lagrangian surfaces -- 5.6.2.Rank two Lagrangian surfaces -- 5.7.Exercises -- 6.Minimizing properties of minimal submanifolds -- 6.1.Minimizing submanifolds and calibrations -- 6.1.1.Hypersurfaces in pseudo-Euclidean space -- 6.1.2.Complex submanifolds in pseudo-Kahler manifolds -- 6.1.3.Minimal Lagrangian submanifolds in complex pseudo-Euclidean space -- 6.2.Non-minimizing submanifolds. 
583 1 |a committed to retain  |c 20230101  |d 20480101  |5 CoU  |f Alliance Shared Trust  |u https://www.coalliance.org/shared-print-archiving-policies. 
650 0 |a Riemannian manifolds.  |0 http://id.loc.gov/authorities/subjects/sh85114045. 
650 0 |a Minimal submanifolds.  |0 http://id.loc.gov/authorities/subjects/sh85129486. 
907 |a .b66038200  |b 03-20-20  |c 03-03-11 
998 |a eng  |b 07-12-11  |c a  |d m   |e -  |f eng  |g si   |h 0  |i 1 
944 |a MARS - RDA ENRICHED 
907 |a .b66038200  |b 11-27-14  |c 03-03-11 
907 |a .b66038200  |b 07-12-11  |c 03-03-11 
946 |a amt 
999 f f |i 1b8d2a4d-449f-5d08-a242-797e0e9b0138  |s 0cee9204-5e01-5dc8-a8cc-808b9495b0da 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Boulder Campus  |c Offsite  |d PASCAL Offsite  |e QA649 .A66 2011  |h Library of Congress classification  |i book  |m P204312214008  |n 1