Solid-state physics [electronic resource] : introduction to the theory / James Patterson, Bernard Bailey.

Learning Solid State Physics involves a certain degree of maturity, since it involves tying together diverse concepts from many areas of physics. The objective is to understand, in a basic way, how solid materials behave. To do this one needs both a good physical and mathematical background. One def...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via Springer)
Main Author: Patterson, James D. (James Deane), 1934-
Other Authors: Bailey, Bernard
Format: Electronic eBook
Language:English
Published: Berlin ; London : Springer, ©2010.
Edition:2nd ed.
Subjects:
Table of Contents:
  • Note continued: 3.1. Reduction to One-Electron Problem
  • 3.1.1. Variational Principle (B)
  • 3.1.2. Hartree Approximation (B)
  • 3.1.3. Hartree-Fock Approximation (A)
  • 3.1.4. Coulomb Correlations and the Many-Electron Problem (A)
  • 3.1.5. Density Functional Approximation (A)
  • 3.2. One-Electron Models
  • 3.2.1. Kronig-Penney Model (B)
  • 3.2.2. Free-Electron or Quasifree-Electron Approximation (B)
  • 3.2.3. Problem of One Electron in a Three-Dimensional Periodic Potential
  • 3.2.4. Effect of Lattice Defects on Electronic States in Crystals (A)
  • Problems
  • 4. Interaction of Electrons and Lattice Vibrations
  • 4.1. Particles and Interactions of Solid-state Physics (B)
  • 4.2. Phonon-Phonon Interaction (B)
  • 4.2.1. Anharmonic Terms in the Hamiltonian (B)
  • 4.2.2. Normal and Umklapp Processes (B)
  • 4.2.3. Comment on Thermal Conductivity (B)
  • 4.2.4. Phononics (EE)
  • 4.3. Electron-Phonon Interaction
  • 4.3.1. Form of the Hamiltonian (B)
  • 4.3.2. Rigid-Ion Approximation (B)
  • 4.3.3. Polaron as a Prototype Quasiparticle (A)
  • 4.4. Brief Comments on Electron-Electron Interactions (B)
  • 4.5. Boltzmann Equation and Electrical Conductivity
  • 4.5.1. Derivation of the Boltzmann Differential Equation (B)
  • 4.5.2. Motivation for Solving the Boltzmann Differential Equation (B)
  • 4.5.3. Scattering Processes and Q Details (B)
  • 4.5.4. Relaxation-Time Approximate Solution of the Boltzmann Equation for Metals (B)
  • 4.6. Transport Coefficients
  • 4.6.1. Electrical Conductivity (B)
  • 4.6.2. Peltier Coefficient (B)
  • 4.6.3. Thermal Conductivity (B)
  • 4.6.4. Thermoelectric Power (B)
  • 4.6.5. Kelvin's Theorem (B)
  • 4.6.6. Transport and Material Properties in Composites (MET, MS)
  • Problems
  • 5. Metals, Alloys, and the Fermi Surface
  • 5.1. Fermi Surface (B)
  • 5.1.1. Empty Lattice (B)
  • 5.1.2. Exercises (B)
  • Note continued: 5.2. Fermi Surface in Real Metals (B)
  • 5.2.1. Alkali Metals (B)
  • 5.2.2. Hydrogen Metal (B)
  • 5.2.3. Alkaline Earth Metals (B)
  • 5.2.4. Noble Metals (B)
  • 5.3. Experiments Related to the Fermi Surface (B)
  • 5.4. de Haas-van Alphen effect (B)
  • 5.5. Eutectics (MS, ME)
  • 5.6. Peierls Instability of Linear Metals (B)
  • 5.6.1. Relation to Charge Density Waves (A)
  • 5.6.2. Spin Density Waves (A)
  • 5.7. Heavy Fermion Systems (A)
  • 5.8. Electromigration (EE, MS)
  • 5.9. White Dwarfs and Chandrasekhar's Limit (A)
  • 5.9.1. Gravitational Self-Energy (A)
  • 5.9.2. Idealized Model of a White Dwarf (A)
  • 5.10. Some Famous Metals and Alloys (B. MET)
  • Problems
  • 6. Semiconductors
  • 6.1. Electron Motion
  • 6.1.1. Calculation of Electron and Hole Concentration (B)
  • 6.1.2. Equation of Motion of Electrons in Energy Bands (B)
  • 6.1.3. Concept of Hole Conduction (B)
  • 6.1.4. Conductivity and Mobility in Semiconductors (B)
  • 6.1.5. Drift of Carriers in Electric and Magnetic Fields: The Hall Effect (B)
  • 6.1.6. Cyclotron Resonance (A)
  • 6.2. Examples of Semiconductors
  • 6.2.1. Models of Band Structure for Si, Ge and II-VI and III-V Materials (A)
  • 6.2.2. Comments about GaN (A)
  • 6.3. Semiconductor Device Physics
  • 6.3.1. Crystal Growth of Semiconductors (EE, MET, MS)
  • 6.3.2. Gunn Effect (EE)
  • 6.3.3. pn-Junctions (EE)
  • 6.3.4. Depletion Width, Varactors, and Graded Junctions (EE)
  • 6.3.5. Metal Semiconductor Junctions
  • the Schottky Barrier (EE)
  • 6.3.6. Semiconductor Surface States and Passivation (EE)
  • 6.3.7. Surfaces Under Bias Voltage (EE)
  • 6.3.8. Inhomogeneous Semiconductors Not in Equilibrium (EE)
  • 6.3.9. Solar Cells (EE)
  • 6.3.10. Transistors (EE)
  • 6.3.11. Charge-Coupled Devices (CCD) (EE)
  • Problems
  • 7. Magnetism, Magnons, and Magnetic Resonance.
  • Note continued: 7.1. Types of Magnetism
  • 7.1.1. Diamagnetism of the Core Electrons (B)
  • 7.1.2. Paramagnetism of Valence Electrons (B)
  • 7.1.3. Ordered Magnetic Systems (B)
  • 7.2. Origin and Consequences of Magnetic Order
  • 7.2.1. Heisenberg Hamiltonian
  • 7.2.2. Magnetic Anisotropy and Magnetostatic Interactions (A)
  • 7.2.3. Spin Waves and Magnons (B)
  • 7.2.4. Band Ferromagnetism (B)
  • 7.2.5. Magnetic Phase Transitions (A)
  • 7.3. Magnetic Domains and Magnetic Materials (B)
  • 7.3.1. Origin of Domains and General Comments (B)
  • 7.3.2. Magnetic Materials (EE, MS)
  • 7.3.3. Nanomagnetism (EE, MS)
  • 7.4. Magnetic Resonance and Crystal Field Theory
  • 7.4.1. Simple Ideas About Magnetic Resonance (B)
  • 7.4.2. Classical Picture of Resonance (B)
  • 7.4.3. Bloch Equations and Magnetic Resonance (B)
  • 7.4.4. Crystal Field Theory and Related Topics (B)
  • 7.5. Brief Mention of Other Topics
  • 7.5.1. Spintronics or Magnetoelectronics (EE)
  • 7.5.2. Kondo Effect (A)
  • 7.5.3. Spin Glass (A)
  • 7.5.4. Solitons (A, EE)
  • Problems
  • 8. Superconductivity
  • 8.1. Introduction and Some Experiments (B)
  • 8.1.1. Ultrasonic Attenuation (B)
  • 8.1.2. Electron Tunneling (B)
  • 8.1.3. Infrared Absorption (B)
  • 8.1.4. Flux Quantization (B)
  • 8.1.5. Nuclear Spin Relaxation (B)
  • 8.1.6. Thermal Conductivity (B)
  • 8.2. London and Ginzburg-Landau Equations (B)
  • 8.2.1. Coherence Length (B)
  • 8.2.2. Flux Quantization and Fluxoids (B)
  • 8.2.3. Order of Magnitude for Coherence Length (B)
  • 8.3. Tunneling (B, EE)
  • 8.3.1. Single-Particle or Giaever Tunneling
  • 8.3.2. Josephson Junction Tunneling
  • 8.4. SQUID: Superconducting Quantum Interference (EE)
  • 8.4.1. Questions and Answers (B)
  • 8.5. Theory of Superconductivity (A)
  • 8.5.1. Assumed Second Quantized Hamiltonian for Electrons and Phonons in Interaction (A)
  • Note continued: 8.5.2. Elimination of Phonon Variables and Separation of Electron-Electron Attraction Term Due to Virtual Exchange of Phonons (A)
  • 8.5.3. Cooper Pairs and the BCS Hamiltonian (A)
  • 8.5.4. Remarks on the Nambu Formalism and Strong Coupling Superconductivity (A)
  • 8.6. Magnesium Diboride (EE, MS, MET)
  • 8.7. Heavy-Electron Superconductors (EE, MS, MET)
  • 8.8. High-Temperature Superconductors (EE, MS, MET)
  • 8.9. Summary Comments on Superconductivity (B)
  • Problems
  • 9. Dielectrics and Ferroelectrics
  • 9.1. Four Types of Dielectric Behavior (B)
  • 9.2. Electronic Polarization and the Dielectric Constant (B)
  • 9.3. Ferroelectric Crystals (B)
  • 9.3.1. Thermodynamics of Ferroelectricity by Landau Theory (B)
  • 9.3.2. Further Comment on the Ferroelectric Transition (B, ME)
  • 9.3.3. One-Dimensional Model of the Soft Mode of Ferroelectric Transitions (A)
  • 9.4. Dielectric Screening and Plasma Oscillations (B)
  • 9.4.1. Helicons (EE)
  • 9.4.2. Alfven Waves (EE)
  • 9.4.3. Plasmonics (EE)
  • 9.5. Free-Electron Screening
  • 9.5.1. Introduction (B)
  • 9.5.2. Thomas-Fermi and Debye-Huckel Methods (A, EE)
  • 9.5.3. Lindhard Theory of Screening (A)
  • Problems
  • 10. Optical Properties of Solids
  • 10.1. Introduction (B)
  • 10.2. Macroscopic Properties (B)
  • 10.2.1. Kronig-Kramers Relations (A)
  • 10.3. Absorption of Electromagnetic Radiation-General (B)
  • 10.4. Direct and Indirect Absorption Coefficients (B)
  • 10.5. Oscillator Strengths and Sum Rules (A)
  • 10.6. Critical Points and Joint Density of States (A)
  • 10.7. Exciton Absorption (A)
  • 10.8. Imperfections (B, MS, MET)
  • 10.9. Optical Properties of Metals (B, EE, MS)
  • 10.10. Lattice Absorption, Restrahlen, and Polaritons (B)
  • 10.10.1. General Results (A)
  • 10.10.2. Summary of the Properties of & epsilon;(q, & omega;) (B)
  • Note continued: 10.10.3. Summary of Absorption Processes: General Equations (B)
  • 10.11. Optical Emission, Optical Scattering and Photoemission (B)
  • 10.11.1. Emission (B)
  • 10.11.2. Einstein A and B Coefficients (B, EE, MS)
  • 10.11.3. Raman and Brillouin Scattering (B, MS)
  • 10.11.4. Optical Lattices (A, B)
  • 10.11.5. Photonics (EE)
  • 10.11.6. Negative Index of Refraction (EE)
  • 10.12. Magneto-Optic Effects: The Faraday Effect (B, EE, MS)
  • Problems
  • 11. Defects in Solids
  • 11.1. Summary About Important Defects (B)
  • 11.2. Shallow and Deep Impurity Levels in Semiconductors (EE)
  • 11.3. Effective Mass Theory, Shallow Defects, and Superlattices (A)
  • 11.3.1. Envelope Functions (A)
  • 11.3.2. First Approximation (A)
  • 11.3.3. Second Approximation (A)
  • 11.4. Color Centers (B)
  • 11.5. Diffusion (MET, MS)
  • 11.6. Edge and Screw Dislocation (MET, MS)
  • 11.7. Thermionic Emission (B)
  • 11.8. Cold-Field Emission (B)
  • 11.9. Microgravity (MS)
  • Problems
  • 12. Current Topics in Solid Condensed-Matter Physics
  • 12.1. Surface Reconstruction (MET, MS)
  • 12.2. Some Surface Characterization Techniques (MET, MS, EE)
  • 12.3. Molecular Beam Epitaxy (MET, MS)
  • 12.4. Heterostructures and Quantum Wells
  • 12.5. Quantum Structures and Single-Electron Devices (EE)
  • 12.5.1. Coulomb Blockade (EE)
  • 12.5.2. Tunneling and the Landauer Equation (EE)
  • 12.6. Superlattices, Bloch Oscillators, Stark-Wannier Ladders
  • 12.6.1. Applications of Superlattices and Related Nanostructures (EE)
  • 12.7. Classical and Quantum Hall Effect (A)
  • 12.7.1. Classical Hall Effect
  • CHE (A)
  • 12.7.2. Quantum Mechanics of Electrons in a Magnetic Field: The Landau Gauge (A)
  • 12.7.3. Quantum Hall Effect: General Comments (A)
  • 12.8. Carbon
  • Nanotubes and Fullerene Nanotechnology (EE)
  • 12.9. Amorphous Semiconductors and the Mobility Edge (EE)
  • Note continued: 12.9.1. Hopping Conductivity (EE)
  • 12.10. Amorphous Magnets (MET, MS)
  • 12.11. Soft Condensed Matter (MET, MS)
  • 12.11.1. General Comments
  • 12.11.2. Liquid Crystals (MET, MS)
  • 12.11.3. Polymers and Rubbers (MET, MS)
  • Problems
  • Appendices
  • A. Units
  • B. Normal Coordinates
  • C. Derivations of Bloch's Theorem
  • C.1. Simple One-Dimensional Derivation
  • C.2. Simple Derivation in Three Dimensions
  • C.3. Derivation of Bloch's Theorem by Group Theory
  • D. Density Matrices and Thermodynamics
  • E. Time-Dependent Perturbation Theory
  • F. Derivation of The Spin-Orbit Term From Dirac's Equation
  • G. Second Quantization Notation for Fermions and Bosons
  • G.1. Bose Particles
  • G.2. Fermi Particles
  • H. Many-Body Problem
  • H.1. Propagators
  • H.2. Green Functions
  • H.3. Feynman Diagrams
  • H.4. Definitions
  • H.5. Diagrams and the Hartree and Hartree-Fock Approximations
  • H.6. Dyson Equation
  • I. Brief Summary of Solid-State Physics
  • J. Folk Theorems
  • K. Handy Mathematical Results
  • L. Condensed Matter Nobel Prize Winners (in Physics or Chemistry)
  • M. Problem Solutions
  • M.1. Chapter 1 Solutions
  • M.2. Chapter 2 Solutions
  • M.3. Chapter 3 Solutions
  • M.4. Chapter 4 Solutions
  • M.5. Chapter 5 Solutions
  • M.6. Chapter 6 Solutions
  • M.7. Chapter 7 Solutions
  • M.8. Chapter 8 Solutions
  • M.9. Chapter 9 Solutions
  • M.10. Chapter 10 Solutions
  • M.11. Chapter 11 Solutions
  • M.12. Chapter 12 Solutions
  • M.13. Appendix B Solutions
  • Bibliography
  • Chapter 1
  • Chapter 2
  • Chapter 3
  • Chapter 4
  • Chapter 5
  • Chapter 6
  • Chapter 7
  • Chapter 8
  • Chapter 9
  • Chapter 10
  • Chapter 11
  • Chapter 12.