Least-Squares Linear Regression and Schrodinger's Cat [microform] : Perspectives on the Analysis of Regression Residuals / Jeffrey B. Hecht.

The analysis of regression residuals and detection of outliers are discussed, with emphasis on determining how deviant an individual data point must be to be considered an outlier and the impact that multiple suspected outlier data points have on the process of outlier determination and treatment. O...

Full description

Saved in:
Bibliographic Details
Online Access: Request ERIC Document
Main Author: Hecht, Jeffrey B.
Format: Microfilm Book
Language:English
Published: [Place of publication not identified] : Distributed by ERIC Clearinghouse, 1991.
Subjects:

MARC

LEADER 00000nam a22000002u 4500
001 b6178835
003 CoU
007 he u||024||||
008 910401s1991 xx |||| bt ||| | eng d
005 20240722200501.5
035 |a (ERIC)ed333020 
040 |a ericd  |c ericd  |d MvI 
099 |f ERIC DOC #  |a ED333020 
100 1 |a Hecht, Jeffrey B. 
245 1 0 |a Least-Squares Linear Regression and Schrodinger's Cat  |h [microform] :  |b Perspectives on the Analysis of Regression Residuals /  |c Jeffrey B. Hecht. 
260 |a [Place of publication not identified] :  |b Distributed by ERIC Clearinghouse,  |c 1991. 
300 |a 27 pages 
336 |a text  |b txt  |2 rdacontent. 
337 |a microform  |b h  |2 rdamedia. 
338 |a microfiche  |b he  |2 rdacarrier. 
500 |a ERIC Note: Paper presented at the Annual Meeting of the American Educational Research Association (Chicago, IL, April 3-7, 1991).  |5 ericd. 
500 |a ERIC Document Number: ED333020. 
520 |a The analysis of regression residuals and detection of outliers are discussed, with emphasis on determining how deviant an individual data point must be to be considered an outlier and the impact that multiple suspected outlier data points have on the process of outlier determination and treatment. Only bivariate (one dependent and one independent) models were investigated. A sufficient number of data points (240 pairs) was used to avoid interpretation problems associated with small data sets. The original data set was successively manipulated to include additional data points with increasingly larger degrees of extremeness, and potential outlier data points were added. To meet the demands of the data set modification, a computer program, DrawReg, was written in QuickBASIC. Outlier points could be viewed as belonging to one of five broad categories, and it was apparent that no single residual statistic could adequately account for all types. The use of multiple outlier detection techniques is recommended as part of the least-squares modeling process. The importance of the argument is illustrated through the discussion of the Schrodinger's Cat situation derived from quantum physics. Twelve tables and six figures illustrate the discussion. An appendix describes the DrawReg program. (SLD) 
533 |a Microfiche.  |b [Washington D.C.]:  |c ERIC Clearinghouse  |e microfiches : positive. 
583 1 |a committed to retain  |c 20240101  |d 2049101  |5 CoU  |f Alliance Shared Trust  |u https://www.coalliance.org/shared-print-archiving-policies  
650 1 7 |a Data Analysis.  |2 ericd 
650 0 7 |a Evaluation Methods.  |2 ericd 
650 1 7 |a Least Squares Statistics.  |2 ericd 
650 1 7 |a Regression (Statistics)  |2 ericd 
856 4 2 |z Request ERIC Document  |u https://colorado.idm.oclc.org/login?url=https://colorado.illiad.oclc.org/illiad/COD/illiad.dll?Action=10&Form=23 
907 |a .b61788351  |b 01-18-22  |c 10-10-10 
944 |a MARS - RDA ENRICHED 
998 |a pas  |b 10-10-10  |c f  |d m   |e -  |f eng  |g xx   |h 0  |i 1 
956 |a ERIC 
999 f f |i 6790b087-5cc4-50be-a4c1-5efd96367cc9  |s 0caa269f-cc60-5a09-ac8f-7d269c73f59c 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Boulder Campus  |c Offsite  |d PASCAL Offsite  |e ED333020  |h Other scheme  |i microfiche  |n 1