SPS ionosphere/microwave beam interactions [electronic resource] : Arecibo experimental studies.
The purpose of this program is to determine the environmental impacts associated with the operation of the proposed SPS microwave power transmission system. It is expected that thermal effects will provide the dominant force driving the nonlinear ionosphere/microwave beam interactions. Collisional d...
Saved in:
Online Access: |
Online Access |
---|---|
Corporate Author: | |
Format: | Government Document Electronic eBook |
Language: | English |
Published: |
Los Alamos, N.M. : Oak Ridge, Tenn. :
Los Alamos Scientific Laboratory ; distributed by the Office of Scientific and Technical Information, U.S. Department of Energy,
1980.
|
Subjects: |
Summary: | The purpose of this program is to determine the environmental impacts associated with the operation of the proposed SPS microwave power transmission system. It is expected that thermal effects will provide the dominant force driving the nonlinear ionosphere/microwave beam interactions. Collisional damping of radio waves, producing ohmic heating of the ionospheric plasma, depends inversely on the square of the radio wave frequency. Therefore, equivalent heating and equivalent thermal forces can be generated at lower radiated power densities by using lower radio wave frequencies. This principle is fundamental to a large part of the experimental program. An understanding of the physics of the specific interactions excited by the SPS microwave beam is also an important part of the assessment program. This program is designed to determine instability thresholds, the growth rates and spatial extent of the resultant ionospheric disturbances, and the frequency and power dependences of the interactions. How these interactions are affected by variations in the natural ionospheric conditions, how different instabilities occurring simultaneously may affect each other, and how distinct microwave beams might mutually interact are studied. Status of the program is described. (WHK) |
---|---|
Item Description: | Published through SciTech Connect. 10/01/1980. "la-ur-80-3095" Duncan, L.M. |
Physical Description: | Pages: 29 : digital, PDF file. |