Progress at SLAC on high-power rf pulse compression [electronic resource]

Rf pulse compression is a technique for augmenting the peak power output of a klystron (typically 50--100 MW) to obtain the high peak power required to drive a linear collider at a high accelerating gradient (typically 200 MW/m is required for a gradient of 100 MV/m). The SLED pulse compression syst...

Full description

Saved in:
Bibliographic Details
Online Access: Online Access
Corporate Author: Stanford Linear Accelerator Center (Researcher)
Format: Government Document Electronic eBook
Language:English
Published: Washington, D.C. : Oak Ridge, Tenn. : United States. Dept. of Defense ; distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 1992.
Subjects:
Description
Summary:Rf pulse compression is a technique for augmenting the peak power output of a klystron (typically 50--100 MW) to obtain the high peak power required to drive a linear collider at a high accelerating gradient (typically 200 MW/m is required for a gradient of 100 MV/m). The SLED pulse compression system, with a power gain of about 2.6, has been operational on the SLAC linac for more than a decade. Recently, a binary pulse-compression system with a power gain of about 5.2 has been tested up to an output power of 120 MW. Further high-power tests are in progress. Our current effort is focused on prototyping a so-called SLED-II pulse-compression system with a power gain of four. Over-moded TE[sub 01]-mode circular waveguide components, some with novel technical features, are used to reduce losses at the 11.4-GHz operating frequency.
Item Description:Published through the Information Bridge: DOE Scientific and Technical Information.
06/01/1992.
"slac-pub-5866"
"DE93009730"
Wilson, P.B.; Ruth, R.D.; Kroll, N.M. California Univ., San Diego; Farkas, Z.D.; Lavine, T.L.; Menegat, A.; Nantista, C.
Physical Description:Pages: (3 p) : digital, PDF file.