Nondimensional transport studies in TFTR [electronic resource]

The machine parameters (I[sub p], P[sub heat], R) required for ignition in ITER have generally been extrapolated from power-law regression fits to global [tau][sub E] measurements on existing tokamaks. There remain important choices to be made in the form of the scaling relation which have not yet b...

Full description

Saved in:
Bibliographic Details
Online Access: Online Access
Corporate Author: Princeton University. Plasma Physics Laboratory (Researcher)
Format: Government Document Electronic eBook
Language:English
Published: Washington, D.C. : Oak Ridge, Tenn. : United States. Dept. of Defense ; distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 1993.
Subjects:

MARC

LEADER 00000nam a22000003u 4500
001 b5955604
003 CoU
005 20080207000000.0
006 m d f
007 cr un
008 100524e19930401dcu s| f1|||||eng|d
035 |a (TOE)ost6560774 
035 |a (TOE)6560774 
040 |a TOE  |c TOE 
049 |a GDWR 
072 7 |a 70  |2 edbsc 
086 0 |a E 1.99: conf-9210315--5 
086 0 |a E 1.99:pppl-2895 
086 0 |a E 1.99: iaea-cn--56/g-3-3 
086 0 |a E 1.99: conf-9210315--5 
245 0 0 |a Nondimensional transport studies in TFTR  |h [electronic resource] 
260 |a Washington, D.C. :  |b United States. Dept. of Defense ;  |a Oak Ridge, Tenn. :  |b distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy,  |c 1993. 
300 |a Pages: (24 p) :  |b digital, PDF file. 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
500 |a Published through the Information Bridge: DOE Scientific and Technical Information. 
500 |a 04/01/1993. 
500 |a "pppl-2895" 
500 |a " iaea-cn--56/g-3-3" 
500 |a " conf-9210315--5" 
500 |a "DE93011979" 
500 |a 14. international conference on plasma physics and controlled nuclear fusion research, Wurzburg (Germany), Oct 1992. 
500 |a Johnson, D.; Bell, R.E.; Park, H.; Scott, S.D.; Bell, M.G.; Barnes, C.W.; Hill, K.W.; Janos, A.; Mansfield, D.K.; Perkins, F.W.; Stratton, B.C.; Bush, C.E.; Fredrickson, E.D.; Tang, W.M.; Zarnstorff, M.C. . Plasma Physics Lab.; Synakowski, E.J.; Mikkelsen, D.R.; Paul, S.; Owens, D.K.; Ramsey, A.T.; Grek, B.; Schivell, J.; Jobes, F.; Er. 
520 3 |a The machine parameters (I[sub p], P[sub heat], R) required for ignition in ITER have generally been extrapolated from power-law regression fits to global [tau][sub E] measurements on existing tokamaks. There remain important choices to be made in the form of the scaling relation which have not yet been resolved by theory. In particular, power flow Q(r) through a magnetic flux surface should scale as Q(r) = Q[sub Bohm]F where F = F([rho]*,[beta],[nu]*,s,T[sub e]/T[sub i],...) is a function of local, nondimensional plasma parameters and Q[sub Bohm] [proportional to] [n[sub e]T[sub e][sup 2]a/eB]. Projections to ITER can be reduced to establishing the dependence of F on [rho]* = [rho][sub i]/a, because one can create plasmas in today's tokamaks which have similar values of the other nondimensional parameters. Two common scalings suggested by theory are Bohm (F independent of [rho]*) and gyroBohm (F [proportional to] [rho]*). Experiments have been carried out on TFTR to ascertain the dependence of F on [rho]*, [nu]*, and [beta] in L-mode plasmas, holding the other nondimensional parameters fixed. The observed variation of heat flow with [rho]* was observed to be better described by Bohm scaling than gyroBohm. Comparisons with the critical gradient temperature transport model, which is gyroBohm in character, show that it overpredicts the temperature increase expected with increasing magnetic field. The [nu]* scan (remaining in the collisionless regime) revealed that the Bohm-normalized power flow is remarkably insensitive to collisionality, in agreement with ITER-P scaling. The [beta] scan identified a deterioration of confinement with increasing [beta] at fixed [rho]* and [nu]*, of approximately the correct magnitude required to reconcile Bohm local transport scaling with ITER-P global scaling of [tau][sub E]. This may suggest a role for electromagnetic phenomena in governing tokamak transport even at very low beta. 
536 |b AC02-76CH03073. 
650 7 |a Transport Theory.  |2 local. 
650 7 |a Radiation Transport.  |2 local. 
650 7 |a Mathematics.  |2 local. 
650 7 |a Closed Plasma Devices.  |2 local. 
650 7 |a Magnetic Flux.  |2 local. 
650 7 |a Electron Density.  |2 local. 
650 7 |a Heat Flow.  |2 local. 
650 7 |a Plasma.  |2 local. 
650 7 |a Confinement Time.  |2 local. 
650 7 |a Scaling Laws.  |2 local. 
650 7 |a Thermonuclear Devices.  |2 local. 
650 7 |a Bohm Criterion.  |2 local. 
650 7 |a Electron Temperature.  |2 local. 
650 7 |a Magnetic Fields.  |2 local. 
650 7 |a Energy Transfer.  |2 local. 
650 7 |a Tftr Tokamak.  |2 local. 
650 7 |a Energy.  |2 local. 
650 7 |a Ion Temperature.  |2 local. 
650 7 |a Tokamak Devices.  |2 local. 
650 7 |a Iter Tokamak.  |2 local. 
650 7 |a Confinement.  |2 local. 
650 7 |a Global Analysis.  |2 local. 
650 7 |a Charged-particle Transport.  |2 local. 
650 7 |a Plasma Physics And Fusion Technology.  |2 edbsc. 
710 2 |a Princeton University.  |b Plasma Physics Laboratory.  |4 res. 
710 1 |a United States.  |b Department of Defense.  |4 spn. 
710 1 |a United States.  |b Department of Energy.  |4 spn. 
710 1 |a United States.  |b Department of Energy.  |b Office of Scientific and Technical Information.  |4 dst. 
856 4 0 |u http://www.osti.gov/servlets/purl/6560774-OrliwY/  |z Online Access 
907 |a .b59556043  |b 03-06-23  |c 05-25-10 
998 |a web  |b 05-25-10  |c f  |d m   |e p  |f eng  |g dcu  |h 0  |i 1 
956 |a Information bridge 
999 f f |i a0179833-8475-5c8b-938a-73f52b60febc  |s 254c3d17-8e13-5b20-96e1-f15eb3167b08 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e E 1.99: conf-9210315--5  |h Superintendent of Documents classification  |i web  |n 1