2D functional nanomaterials [electronic resource] : synthesis, characterization, and applications / edited by Ganesh S. Kamble.

2D Functional Nanomaterials Outlines the latest developments in 2D heterojunction nanomaterials with energy conversion applications In 2D Functional Nanomaterials: Synthesis, Characterization, and Applications, Dr. Ganesh S. Kamble presents an authoritative overview of the most recent progress in th...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via Wiley)
Other Authors: Kamble, Ganesh S.
Format: Electronic eBook
Language:English
Published: Weinheim, Germany : Wiley-VCH, [2022]
Subjects:

MARC

LEADER 00000cam a2200000xa 4500
001 b12931808
003 CoU
005 20230428070311.0
006 m o d
007 cr |||||||||||
008 211013s2022 gw ob 001 0 eng d
019 |a 1275427350  |a 1276775393  |a 1276778676 
020 |a 9783527823963  |q (electronic bk. ;  |q oBook) 
020 |a 3527823964  |q (electronic bk. ;  |q oBook) 
020 |a 9783527823949  |q (electronic bk.) 
020 |a 3527823948  |q (electronic bk.) 
020 |z 3527346775 
020 |z 9783527346776 
024 7 |a 10.1002/9783527823963 
035 |a (OCoLC)wol1275355381 
035 |a (OCoLC)1275355381  |z (OCoLC)1275427350  |z (OCoLC)1276775393  |z (OCoLC)1276778676 
040 |a YDX  |b eng  |e pn  |c YDX  |d YDX  |d DG1  |d OCLCF  |d OCLCO  |d OCLCQ  |d OCLCO  |d N$T  |d SFB  |d OCLCQ  |d UPM  |d OCLCQ  |d ORMDA 
049 |a GWRE 
050 4 |a TA418.9.N35 
245 0 0 |a 2D functional nanomaterials  |h [electronic resource] :  |b synthesis, characterization, and applications /  |c edited by Ganesh S. Kamble. 
260 |a Weinheim, Germany :  |b Wiley-VCH,  |c [2022] 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
504 |a Includes bibliographical references and index. 
505 0 |a Cover -- Title Page -- Copyright -- Contents -- Foreword -- Preface -- Chapter 1 Graphene Chemical Derivatives Synthesis and Applications: State-of-the-Art and Perspectives -- 1.1 Introduction -- 1.2 Graphene Oxide: Synthesis Methods and Chemistry Alteration -- 1.3 Graphene Oxide Reduction and Functionalization -- 1.4 Applications of CMGs -- 1.5 Concluding Remarks -- Acknowledgments -- References -- Chapter 2 2D/2D Graphene Oxide-Layered Double Hydroxide Nanocomposite for the Immobilization of Different Radionuclides -- 2.1 Introduction -- 2.2 Synthesis of GO/LDH Composite -- 2.2.1 Co-precipitation -- 2.2.2 Hydrothermal Preparation -- 2.2.3 Self-Assembly of LDH Nanosheets with GO Nanosheets -- 2.3 Removal of Radionuclides -- 2.3.1 U(VI) Removal -- 2.3.2 Sorption of Eu(III) with the Presence of GO on LDH -- 2.3.3 Co-remediation Anionic SeO42− and Cationic Sr2+ -- 2.4 Conclusion -- References -- Chapter 3 2D Nanomaterials for Biomedical Applications -- 3.1 Introduction -- 3.1.1 Photothermal and Photodynamic Therapy -- 3.1.2 Bioimaging and Drug/Gene Delivery -- 3.1.3 Biosensors -- 3.1.4 Antibacterial Activity -- 3.1.5 Tissue Engineering and Regenerative Medicine -- 3.2 Conclusions -- References -- Chapter 4 Novel Two-Dimensional Nanomaterials for Next-Generation Photodetectors -- 4.1 Introduction -- 4.2 2D Materials for PDs -- 4.2.1 Graphene -- 4.2.2 TMDs (Transition Metal Dichalcogenides) -- 4.2.3 MXenes (2D Transition Metal Carbides/Nitrides) -- 4.2.4 Xenes (Monoelemental 2D Materials) -- 4.3 The Physical Mechanism Enabling Photodetection -- 4.4 Characterization Parameters for Photodetectors -- 4.4.1 Responsivity -- 4.4.2 Detectivity -- 4.4.3 External Quantum Efficiency -- 4.4.4 Gain -- 4.4.5 Response Time -- 4.4.6 Noise Equivalent Power -- 4.5 Synthesis Methods for 2D Materials -- 4.5.1 Mechanical Exfoliation -- 4.5.2 Liquid Exfoliation. 
505 8 |a 4.5.3 Chemical Vapor Deposition (CVD) -- 4.6 Photodetectors Based on 2D Materials -- 4.6.1 Photodetectors Based on Graphene -- 4.6.2 Photodetectors Based on MoS2 -- 4.6.3 Photodetectors Based on BP -- 4.7 Photodetectors Based on 2D Heterostructures -- 4.8 Conclusions and Outlook -- References -- Chapter 5 2D Nanomaterials for Cancer Therapy -- 5.1 Introduction -- 5.2 2D Nanomaterials for Cancer Therapy -- 5.2.1 2D Nanomaterials for Combination PTT with PDT -- 5.2.2 2D-Nanomaterials for Combination PTT Therapy with Radiotherapy (RT) -- 5.2.3 2D Nanomaterials for Combination PTT Therapy with Sonodynamic Therapy (SDT) -- 5.2.4 2D Nanomaterials for Combination PTT Therapy with Immune Therapy (ImT) -- 5.3 Summary and Future Perspectives -- References -- Chapter 6 Graphene and Its Derivatives - Synthesis and Applications -- 6.1 Introduction -- 6.2 Graphite -- 6.2.1 Define -- 6.2.2 Synthetic Graphite -- 6.2.3 Characterized and Properties of Graphite -- 6.2.3.1 Structure -- 6.2.4 Applications -- 6.3 Graphene Oxide -- 6.3.1 Define -- 6.3.2 Synthetic of Graphene Oxide -- 6.3.3 Characterized and Properties of Graphene Oxide -- 6.3.3.1 Structure -- 6.3.3.2 Properties of Graphene Oxide -- 6.3.3.3 Applications of Graphene Oxide -- 6.3.3.4 Few Examples -- 6.4 Reduced Graphene Oxide -- 6.4.1 Define -- 6.4.2 Synthetic of Reduced Graphene Oxide or Reduction of Graphene Oxide -- 6.4.2.1 Thermal Reduction of GO -- 6.4.2.2 Photocatalytic Method -- 6.4.2.3 Electrochemical Method -- 6.4.2.4 Other Methods -- 6.4.3 Characterized, Structure, and Properties of Reduced Graphene Oxide -- 6.4.3.1 Structure -- 6.4.3.2 Properties and Applications of Reduced Graphene Oxide -- 6.5 Graphene -- 6.5.1 Define -- 6.5.2 Synthesis of Graphene -- 6.5.2.1 Chemical Vapor Deposition (CVD) -- 6.5.2.2 Epitaxial Growth -- 6.5.2.3 Mechanical Exfoliation. 
505 8 |a 6.5.2.4 Chemical Reduction of Graphene Oxide (GO) -- 6.5.3 Characterized, Structure, and Properties of Graphene -- 6.5.3.1 Surface Properties -- 6.5.3.2 Electronic Properties -- 6.5.3.3 Optical Properties -- 6.5.3.4 Mechanical Properties -- 6.5.3.5 Thermal Properties -- 6.5.3.6 Photocatalytic Properties -- 6.5.3.7 Magnetic Properties -- 6.5.3.8 Characterizations of Graphene -- 6.5.3.9 Morphology (SEM, TEM, and AFM) -- 6.5.3.10 Raman Spectroscopy -- 6.5.3.11 X-ray Photoelectron Spectroscopy (XPS) -- 6.5.3.12 UV-Visible Spectroscopy -- 6.5.3.13 X-ray Diffraction (XRD) -- 6.5.3.14 Thermogravimetric Analysis (TGA) -- 6.5.3.15 FTIR Spectroscopy -- 6.5.4 Application of Graphene -- References -- Chapter 7 Recent Trends in Graphene - Latex Nanocomposites -- 7.1 Introduction -- 7.2 Polymer Lattices - An Overview -- 7.3 Graphene - Background -- 7.4 Preparation and Functionalization of Graphene -- 7.5 Graphene - Latex Nanocomposites: Preparation Properties and Applications -- 7.6 Conclusions -- References -- Chapter 8 Advanced Characterization and Techniques -- 8.1 Introduction -- 8.2 Characterization Techniques -- 8.2.1 Optical Techniques - Dynamic Light Scattering (DLS) -- 8.2.2 Optical Spectroscopy -- 8.2.3 NMR-Nuclear Magnetic Resonance Spectroscopy -- 8.2.4 Infrared Spectroscopy (IR) and Raman Spectroscopy -- 8.2.5 X-Ray Photoelectron Spectroscopy (XPS) -- 8.2.6 Characterization Based on Interactions with Electrons or Electron Microscopy (EM) -- 8.2.6.1 Scanning Electron Microscopy (SEM) -- 8.2.6.2 Transmission Electron Microscopy (TEM) -- 8.2.6.3 Scanning Transmission Electron Microscopy (STEM) -- 8.2.6.4 Scanning Tunneling Microscopy (STM) -- 8.2.7 Atomic Force Microscopy (AFM) -- 8.2.8 Kelvin Probe Force Microscopy (KPFM) -- 8.2.9 X-Ray-Based Techniques -- References -- Chapter 9 2D Nanomaterials: Sustainable Materials for Cancer Therapy Applications. 
505 8 |a 9.1 Introduction -- 9.2 Types of 2D Nanomaterials -- 9.3 Methods for the Synthesis of 2D Nanomaterials -- 9.4 Mechanism of Cancer Theranostics -- 9.5 Applications of 2D Nanomaterials -- 9.6 Conclusion -- References -- Chapter 10 Recent Advances in Functional 2D Materials for Field Effect Transistors and Nonvolatile Resistive Memories -- 10.1 Introduction to 2D Materials -- 10.2 Electronic Band Structure in 2D Materials -- 10.3 Electronic Transport Properties of 2D Materials -- 10.4 Two-Dimensional Materials in Field Effect Transistors -- 10.4.1 Field Effect Transistors -- 10.4.2 The Rise of 2D Materials Research in FETs -- 10.4.3 Graphene-Based Field Effect Transistors -- 10.4.4 2D Transition Metal Dichalcogenides (TMDCs) in Transistors -- 10.5 Two-Dimensional Materials as Nonvolatile Resistive Memories -- 10.5.1 Nonvolatile Resistive Memories Based on Graphene and Its Derivatives -- 10.5.2 Resistive Switching Memories in 2D Materials "Beyond" Graphene -- 10.5.2.1 Solution-Processed MoS2-Based Resistive Memories -- 10.5.2.2 Solution-Processed Black Phosphorous Nonvolatile Resistive Memories -- 10.5.2.3 Emerging NVM Based on Hexagonal Boron Nitride (h-BN) -- 10.6 Conclusions and Outlook -- References -- Chapter 11 2D Advanced Functional Nanomaterials for Cancer Therapy -- 11.1 Introduction -- 11.2 2D Nanomaterials Classification -- 11.2.1 Graphene Family Nanomaterials -- 11.2.2 Transition Metal Dichalcogenides (TMDs) -- 11.2.3 Layered Double Hydroxides (LDHs) -- 11.2.4 Carbonitrides (MXenes) -- 11.2.5 Black Phosphorus (BP) -- 11.3 Cancer Therapy -- 11.3.1 Mechanism of Action in Cancer Therapy -- 11.3.1.1 Mode of Action of 2D Nanomaterials -- 11.3.2 Photodynamic Therapy for Cancer Cell Treatment -- 11.3.2.1 Mechanism of Photodynamic Therapy -- 11.3.2.2 2D Nanomaterials as Photosensitizer for PDT. 
505 8 |a 11.3.2.3 Application of 2D Nanomaterials in Photodynamic Therapy -- 11.3.3 2D Nanomaterials-Cancer Detection/Diagnosis/Theragnostic -- 11.4 Tissue Engineering -- 11.5 Conclusion -- Acknowledgment -- References -- Chapter 12 Synthesis of Nanostructured Materials Via Green and Sol-Gel Methods: A Review -- 12.1 Introduction -- 12.2 Methods Used in Nanostructured Synthesis -- 12.2.1 Green Method of Nanoparticles Synthesis -- 12.2.2 Sol-Gel Method of Nanoparticles Synthesis -- 12.2.3 Green Method of Nanocomposites Synthesis -- 12.2.4 Sol-Gel Method of Nanocomposites -- 12.3 Discussion -- 12.4 Conclusion -- References -- Chapter 13 Study of Antimicrobial Activity of ZnO Nanoparticles Using Leaves Extract of Ficus auriculata Based on Green Chemistry Principles -- 13.1 Introduction -- 13.2 Materials and Methods -- 13.2.1 Chemicals -- 13.2.2 Methodology -- 13.2.3 Antimicrobial Activity -- 13.3 Results and Discussion -- 13.3.1 Characterization of Synthesized Zinc-Oxide Nanoparticles (ZnONPs) -- 13.3.1.1 XRD Analysis -- 13.3.1.2 FT-IR Analysis -- 13.3.1.3 SEM Analysis -- 13.3.1.4 TEM Analysis -- 13.3.2 Antibacterial Activity -- 13.4 Conclusion -- Acknowledgments -- References -- Chapter 14 Piezoelectric Properties of Na1−xKxNbO3 near x &amp -- equals -- 0.475, Morphotropic Phase Region -- 14.1 Introduction -- 14.2 Experimental Procedure -- 14.3 Results and Discussion -- References -- Chapter 15 Synthesis and Characterization of SDC Nano-Powder for IT-SOFC Applications -- 15.1 Introduction -- 15.1.1 Solid Oxide Fuel Cells (SOFCs) -- 15.1.2 Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs) -- 15.1.3 Why Samarium-Doped Ceria (SDC) Material? -- 15.1.4 Various Synthesis Methods for SDC -- 15.1.5 Why SDC Synthesis by Combustion Process? -- 15.1.6 Why SDC Synthesis by Glycine Nitrate Combustion Process (GNP)? 
520 |a 2D Functional Nanomaterials Outlines the latest developments in 2D heterojunction nanomaterials with energy conversion applications In 2D Functional Nanomaterials: Synthesis, Characterization, and Applications, Dr. Ganesh S. Kamble presents an authoritative overview of the most recent progress in the rational design and synthesis of 2D nanomaterials and their applications in semiconducting catalysts, biosensors, electrolysis, batteries, and solar cells. This interdisciplinary volume is a valuable resource for materials scientists, electrical engineers, nanoscientists, and solid-state physicists looking for up-to-date information on 2D heterojunction nanomaterials. The text summarizes the scientific contributions of international experts in the fabrication and application of 2D nanomaterials while discussing the importance and impact of 2D nanomaterials on future economic growth, novel manufacturing processes, and innovative products. Provides thorough coverage of graphene chemical derivatives synthesis and applications, including state-of-the-art developments and perspectives Describes 2D/2D graphene oxide-layered double hydroxide nanocomposites for immobilization of different radionuclides Covers 2D nanomaterials for biomedical applications and novel 2D nanomaterials for next-generation photodetectors Discusses applications of 2D nanomaterials for cancer therapy and recent trends ingraphene-latex nanocomposites Perfect for materials scientists, inorganic chemists, and electronics engineers, 2D Functional Nanomaterials: Synthesis, Characterization, and Applications is also an essential resource for solid-state physicists seeking accurate information on recent progress in two-dimensional heterojunction materials with energy conversion applications. 
650 0 |a Nanostructured materials.  |0 http://id.loc.gov/authorities/subjects/sh93000864. 
650 0 |a Nanostructured materials  |x Synthesis. 
650 7 |a Nanostructured materials.  |2 fast  |0 (OCoLC)fst01032630. 
700 1 |a Kamble, Ganesh S. 
776 0 8 |i Print version:  |t 2D functional nanomaterials.  |d Weinheim, Germany : Wiley-VCH, [2022]  |z 3527346775  |z 9783527346776  |w (OCoLC)1083131398. 
856 4 0 |u https://colorado.idm.oclc.org/login?url=https://onlinelibrary.wiley.com/doi/book/10.1002/9783527823963  |z Full Text (via Wiley) 
907 |a .b129318085  |b 06-13-23  |c 05-11-23 
998 |a web  |b 05-31-23  |c b  |d b   |e -  |f eng  |g gw   |h 0  |i 1 
907 |a .b129318085  |b 06-01-23  |c 05-11-23 
944 |a MARS - RDA ENRICHED 
915 |a - 
956 |a Wiley Online Library eBooks 
956 |b Wiley Online Library: Complete oBooks 
999 f f |i 72ace3b4-af92-581f-ac97-a753a65432e9  |s b55fd7cd-e97c-59d6-b409-12e5c64195fd 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e TA418.9.N35  |h Library of Congress classification  |i web  |n 1