WNT signaling in development and disease / edited by Terry P. Yamaguchi, Karl Willert.

Saved in:
Bibliographic Details
Online Access: Full Text (via ScienceDirect)
Other Authors: Yamaguchi, Terry P., Willert, Karl
Format: eBook
Language:English
Published: Cambridge, MA : Academic Press, 2023.
Series:Current topics in developmental biology ; v. 153.
Subjects:

MARC

LEADER 00000cam a22000007a 4500
001 b12921695
003 CoU
005 20230407062059.0
006 m o d
007 cr |||||||||||
008 230330s2023 mau o 000 0 eng d
020 |a 9780128201640  |q (electronic bk.) 
020 |a 0128201649  |q (electronic bk.) 
020 |z 9780128201671 
020 |z 0128201673 
035 |a (OCoLC)scd1374189601 
035 |a (OCoLC)1374189601 
037 |a scd00702153/153 
040 |a YDX  |b eng  |c YDX  |d SFB  |d OPELS 
049 |a GWRE 
050 4 |a QP552.W58 
245 0 0 |a WNT signaling in development and disease /  |c edited by Terry P. Yamaguchi, Karl Willert. 
260 |a Cambridge, MA :  |b Academic Press,  |c 2023. 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
490 1 |a Current topics in developmental biology ;  |v v. 153. 
505 0 |a Intro -- Wnt Signaling in Development and Disease -- Copyright -- Contents -- Contributors -- Preface -- References -- Chapter One: The logistics of Wnt production and delivery -- 1. Wnt production and delivery: A complex logistical problem -- 2. Lipidation -- 2.1. An unusual lipid modification -- 2.2. Porcupine: An enzyme dedicated to Wnt lipidation -- 3. Glycosylation -- 4. Progression through the secretory pathway -- 4.1. Wntless escorts Wnts through the secretory pathway -- 4.2. Binding of Wnts to Wntless -- 4.3. Other players acting in the ER and Golgi -- 5. Beyond Wls -- 5.1. Wnt trafficking in epithelial cells -- 5.2. Let Wnt go -- 6. Transport and gradient formation -- 6.1. Juxtacrine signaling -- 6.2. Evidence for long range signaling -- 6.3. Long range signaling by cytonemes -- 6.4. Long range signaling by diffusion -- 7. Wnt interactions with HSPGs and glypicans -- 7.1. HSPGs modulate multiple signaling pathways -- 7.2. The role of glypicans in Wnt transport -- 8. Other means of shielding the Wnt lipid in the extracellular space -- 9. Wnts reach their receptors: Handover and initiation of signaling -- 10. How a lipidated morphogen came to be during evolution -- Acknowledgments -- References -- Chapter Two: Visualizing WNT signaling in mammalian systems -- 1. Introduction -- 2. Imaging individual players at the molecular level -- 2.1. The signalosome -- 2.1.1. WNT ligands -- 2.1.2. Frizzled/LRP and disheveled -- 2.2. The CTNNB1 destruction complex and enhanceosome -- 2.2.1. Destruction complex -- 2.2.2. CTNNB1 -- 2.2.3. TCF/LEF -- 3. Imaging signaling output at the cellular level -- 3.1. A brief history of TCF/LEF reporters -- 3.2. 7x TCF-GFP in cell lines -- 3.3. WNT reporters in mice -- 3.3.1. TCF/LEF reporters in mice -- 3.3.2. Axin2 reporter strains -- 4. Discussion and outlook -- Acknowledgments -- References. 
505 8 |a 3.3. Developmental transitions through pluripotency stages are regulated by Wnt signaling -- 4. Role of Wnts in gastrulation -- 4.1. The primitive streak (PS) and early gastrulation -- 4.2. Axial progenitors -- 4.3. The trunk-to-tail transition -- 4.4. Axial progenitors and retinoic acid -- 5. Closing remarks -- References -- Chapter Six: Role of Wnt signaling and planar cell polarity in left-right asymmetry -- 1. Canonical Wnt signaling regulates the formation of the node, the left-right organizer -- 2. Non-canonical Wnt signaling and planar cell polarity determines the tilt of motile cilia at the node -- 2.1. Motile and immotile cilia are required for establishing L-R asymmetry -- 2.2. The tilt of motile cilia is determined by the position of the basal body in node cells -- 2.3. Correct positioning of the basal body by planar cell polarity genes -- 2.4. Graded distribution of Wnt5a activity along the antero-posterior axis of the mouse embryo polarizes node cells -- 2.5. Microtubules and actomyosin provide pushing force for shifting the basal body position -- 3. Canonical Wnt signaling in establishing asymmetric nodal activity at the node -- 4. Conclusions -- Acknowledgments -- References -- Chapter Seven: Non-canonical WNT5A-ROR signaling: New perspectives on an ancient developmental pathway -- 1. A brief history of canonical and non-canonical WNT pathways -- 2. Emergence of WNT5A-ROR signaling as a major non-canonical WNT pathway -- 3. Robinow syndrome as a disorder of WNT5A-ROR signaling -- 4. Molecular insights from Robinow syndrome and related disease mutations -- 4.1. WNT5A -- 4.2. ROR2 -- 4.3. Dishevelleds -- 4.4. Frizzled 2 -- 5. Growing connections to cancer metastasis -- 6. Cell biological functions of WNT5A-ROR signaling -- 7. Concluding remarks -- Acknowledgments -- References. 
505 8 |a Chapter Eight: The role of Wnt signaling in Xenopus neural induction -- 1. Introduction -- 1.1. Neural induction from newt to frog -- 1.2. The anatomy of the Xenopus gastrula/neurula embryo -- 2. The arising of embryonic signaling centers -- 2.1. The Nieuwkoop center and the formation of the Spemann organizer -- 3. The Wnt pathway discovery and its impact on X. laevis embryogenesis -- 3.1. How cancer biology and the Wnt pathway discovery impacted the understanding of Xenopus embryogenesis -- 3.2. Revealing molecular induction properties: Is there room for one more organizer? -- 4. The BMP signaling pathway and the neural default model -- 5. WNT morphogen activity and its impact on Xenopus AP embryonic neural patterning -- 5.1. Wnt inhibitors are involved in neural induction and head formation -- 5.2. Wnt antagonists secreted from Spemann organizer -- 5.3. Wnt antagonists secreted in Naïve ectoderm -- 6. Concluding remarks -- Acknowledgments -- References -- Chapter Nine: Wnt regulation of hematopoietic stem cell development and disease -- 1. Hematopoietic stem cells-The source of our blood and immune cell pool -- 2. In vivo models for hematopoietic stem cell development -- 3. Wnt signaling -- 4. Wnt signaling in HSC development and homeostasis -- 5. Wnt signaling and hematological malignancies -- 6. Epigenetic regulation in HSCs and Wnt signaling -- 7. Conclusion -- References -- Chapter Ten: Role of Wnt signaling in the maintenance and regeneration of the intestinal epithelium -- 1. Introduction -- 2. Overview of the Wnt pathway -- 3. Organization of the intestinal epithelium -- 3.1. The organoid model -- 4. Wnt pathway in intestinal homeostasis and regeneration -- 4.1. Modulation of Wnt signaling during homeostasis -- 4.2. Determination of the stem cell state -- 4.3. Reconstituting the stem cell pool after injury. 
505 8 |a 5. Regulation of Wnt signaling by the intestinal niche -- 5.1. Paneth cells -- 5.2. Deep crypt secretory cells -- 5.3. Stromal cells -- 5.4. Immune and lymphatic cells -- 5.5. Nervous system -- 5.6. Extracellular matrix -- 5.7. Flora -- 5.8. Nutrition -- 6. Discussion -- References -- Chapter Eleven: Got WNTS? Insight into bone health from a WNT perspective -- 1. Bone development -- 2. Wnt signaling in limb development -- 3. Wnt signaling and human skeletal malformations -- 4. Wnt signaling and bone homeostasis -- 5. Therapeutics and future directions -- Acknowledgments -- References -- Chapter Twelve: Wnt signaling in whole-body regeneration -- 1. Introduction -- 2. Planarian regeneration is supported by pluripotent adult stem cells -- 3. Planarians have constitutive Wnt positional information specified from muscle -- 4. Injury-induced Wnt signals regulate the polarity of blastema outgrowth -- 5. Constitutive Wnt gradients pattern the AP axis in homeostasis and regeneration -- 6. Wnts control reestablishment of tissue proportionality in planarian regeneration -- 7. Wnt signaling from muscle controls AP regeneration of the Acoel Hofstenia miamia -- 8. Wnt signaling controls oral-aboral identity in whole-body regeneration of Cnidarians -- 9. Concluding remarks -- Acknowledgments -- References -- Chapter Thirteen: From injury to patterning-MAPKs and Wnt signaling in Hydra -- 1. Introduction -- 2. Wnt signaling in Hydra axis formation -- 3. Autocatalytic Wnt activation and Wnt inhibitors in Hydra pattern formation -- 4. Cell cycle dynamics of Hydra regeneration -- 5. Transcriptomic and (phospho-) proteomic profiles of Hydra regeneration -- 6. A dual role of Wnt signaling in regeneration -- 7. The injury signal in Hydra -- 7.1. ROS and calcium -- 7.2. Mitogen activated protein kinases ERK, JNK, and p38 -- 7.3. Cell competition and apoptosis. 
588 0 |a Print version record. 
650 0 |a Wnt proteins. 
650 0 |a Cellular signal transduction. 
700 1 |a Yamaguchi, Terry P. 
700 1 |a Willert, Karl. 
776 0 8 |c Original  |z 0128201673  |z 9780128201671  |w (OCoLC)1342490809. 
776 0 8 |i Print version:  |t WNT SIGNALING IN DEVELOPMENT AND DISEASE.  |d [S.l.] : ELSEVIER ACADEMIC PRESS, 2023  |z 0128201673  |w (OCoLC)1342490809. 
830 0 |a Current topics in developmental biology ;  |v v. 153. 
856 4 0 |u https://colorado.idm.oclc.org/login?url=https://www.sciencedirect.com/science/bookseries/00702153/153  |z Full Text (via ScienceDirect) 
907 |a .b129216951  |b 04-13-23  |c 04-13-23 
998 |a web  |b  - -   |c f  |d b   |e -  |f eng  |g mau  |h 0  |i 1 
915 |a 7 
956 |a ScienceDirect ebooks 
956 |b ScienceDirect All Books 
999 f f |i a5089bc4-d957-56db-93e9-dfce9277c3bf  |s 65cd0ced-acc8-5a43-8384-7a76da97ff96 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e QP552.W58  |h Library of Congress classification  |i web  |n 1