Bioinspiration and biomimicry in chemistry [electronic resource] : reverse-engineering nature / edited by Gerhard F. Swiegers.

"Through billions of years of evolution, Nature has generated some remarkable systems and substances that have made life on earth what it is today. Increasingly, scientists are seeking to mimic Nature's systems and processes in the lab in order to harness the power of Nature for the benefi...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via Wiley)
Other Authors: Swiegers, Gerhard F.
Format: Electronic eBook
Language:English
Published: Hoboken, N.J. : Wiley, ©2012.
Subjects:

MARC

LEADER 00000cam a2200000xa 4500
001 b12214079
003 CoU
005 20220513050510.0
006 m o d
007 cr |||||||||||
008 120112s2012 nju ob 001 0 eng
010 |a 2012001654 
019 |a 814694364  |a 961633347  |a 962651198  |a 974769652  |a 974852587  |a 988413401  |a 991959711  |a 1002386226  |a 1018089211  |a 1037714759  |a 1038033870  |a 1038693563  |a 1041613550  |a 1044359756  |a 1045546823  |a 1053547055  |a 1056149045  |a 1056348751  |a 1058082106  |a 1060883462  |a 1075583056  |a 1086957564  |a 1100535565  |a 1148158823 
020 |a 9781118310021  |q (mobi) 
020 |a 1118310020  |q (mobi) 
020 |a 9781118310069  |q (pdf) 
020 |a 1118310063  |q (pdf) 
020 |a 9781118310076  |q (epub) 
020 |a 1118310071  |q (epub) 
020 |a 9781118310083 
020 |a 111831008X 
020 |z 9780470566671  |q (cloth) 
020 |z 0470566671 
020 |z 9781283700214 
020 |z 1283700212 
035 |a (OCoLC)wol772715758 
035 |a (OCoLC)772715758  |z (OCoLC)814694364  |z (OCoLC)961633347  |z (OCoLC)962651198  |z (OCoLC)974769652  |z (OCoLC)974852587  |z (OCoLC)988413401  |z (OCoLC)991959711  |z (OCoLC)1002386226  |z (OCoLC)1018089211  |z (OCoLC)1037714759  |z (OCoLC)1038033870  |z (OCoLC)1038693563  |z (OCoLC)1041613550  |z (OCoLC)1044359756  |z (OCoLC)1045546823  |z (OCoLC)1053547055  |z (OCoLC)1056149045  |z (OCoLC)1056348751  |z (OCoLC)1058082106  |z (OCoLC)1060883462  |z (OCoLC)1075583056  |z (OCoLC)1086957564  |z (OCoLC)1100535565  |z (OCoLC)1148158823 
040 |a DLC  |b eng  |e pn  |c DLC  |d YDX  |d N$T  |d CDX  |d YDXCP  |d EBLCP  |d E7B  |d DG1  |d IUL  |d UBY  |d MYG  |d IDEBK  |d COO  |d CHVBK  |d OCLCF  |d DEBSZ  |d DEBBG  |d D6H  |d AZK  |d OCLCQ  |d DG1  |d COCUF  |d OCLCO  |d MOR  |d LIP  |d PIFAG  |d VGM  |d ZCU  |d OCLCQ  |d MERUC  |d OCLCQ  |d NJR  |d U3W  |d OCLCQ  |d STF  |d WRM  |d OCLCQ  |d CEF  |d NRAMU  |d ICG  |d INT  |d VT2  |d COF  |d AU@  |d OCLCQ  |d WYU  |d OCLCQ  |d DKC  |d OCLCQ  |d UKAHL  |d OCLCO 
042 |a pcc 
049 |a GWRE 
050 0 0 |a QP517.B56 
066 |c (S 
245 0 0 |a Bioinspiration and biomimicry in chemistry  |h [electronic resource] :  |b reverse-engineering nature /  |c edited by Gerhard F. Swiegers. 
260 |a Hoboken, N.J. :  |b Wiley,  |c ©2012. 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
347 |a data file  |2 rda. 
380 |a Bibliography. 
504 |a Includes bibliographical references and index. 
505 0 0 |6 880-01  |g Note continued:  |g 13.3.2.  |t Charge Transfer in Dendrimers --  |g 13.4.  |t Light-Harvesting Dendrimers in Clean Energy Technologies --  |g 13.5.  |t Conclusion --  |t References --  |g 14.  |t Biomimicry in Organic Synthesis /  |r Reinhard W. Hoffmann --  |g 14.1.  |t Introduction --  |g 14.2.  |t Biomimetic Synthesis of Natural Products --  |g 14.2.1.  |t Potentially Biomimetic Synthesis --  |g 14.3.  |t Biomimetic Reactions in Organic Synthesis --  |g 14.4.  |t Biomimetic Considerations as an Aid in Structural Assignment --  |g 14.5.  |t Reflections on Biomimicry in Organic Synthesis --  |t References --  |g 15.  |t Conclusion and Future Perspectives: Drawing Inspiration from the Complex System that Is Nature /  |r Gerhard F. Swiegers --  |g 15.1.  |t Introduction: Nature as a Complex System --  |g 15.2.  |t Common Features of Complex Systems and the Aims of Systems Chemistry --  |g 15.3.  |t Examples of Research in Systems Chemistry --  |g 15.3.1.  |t Self-Replication, Amplification, and Feedback --  |g 15.3.2.  |t Emergence, Evolution, and the Origin of Life --  |g 15.3.3.  |t Autonomy and Autonomous Agents: Examples of Equilibrium and Nonequilibrium Systems --  |g 15.4.  |t Conclusion: Systems Chemistry may have Implications in Other Fields --  |t References. 
520 |a "Through billions of years of evolution, Nature has generated some remarkable systems and substances that have made life on earth what it is today. Increasingly, scientists are seeking to mimic Nature's systems and processes in the lab in order to harness the power of Nature for the benefit of society. Bioinspiration and Biomimicry in Chemistry explores the chemistry of Nature and how we can replicate what Nature does in abiological settings. Specifically, the book focuses on wholly artificial, man-made systems that employ or are inspired by principles of Nature, but which do not use materials of biological origin. [.] Written by a team of leading international experts, the contributed chapters collectively lay the groundwork for a new generation of environmentally friendly and sustainable materials, pharmaceuticals, and technologies. Readers will discover the latest advances in our ability to replicate natural systems and materials as well as the many impediments that remain, proving how much we still need to learn about how Nature works. Bioinspiration and Biomimicry in Chemistry is recommended for students and researchers in all realms of chemistry. Addressing how scientists are working to reverse engineer Nature in all areas of chemical research, the book is designed to stimulate new discussion and research in this exciting and promising field."--  |c Provided by publisher. 
588 0 |a Print version record and CIP data provided by publisher. 
650 0 |a Biomimicry.  |0 http://id.loc.gov/authorities/subjects/sh2009009163. 
650 0 |a Biomimetics.  |0 http://id.loc.gov/authorities/subjects/sh89000711. 
650 0 |a Biomedical engineering.  |0 http://id.loc.gov/authorities/subjects/sh85014237. 
650 0 |a Biomedical materials.  |0 http://id.loc.gov/authorities/subjects/sh85014239. 
650 7 |a Biomedical engineering.  |2 fast  |0 (OCoLC)fst00832568. 
650 7 |a Biomedical materials.  |2 fast  |0 (OCoLC)fst00832586. 
650 7 |a Biomimetics.  |2 fast  |0 (OCoLC)fst00832620. 
650 7 |a Biomimicry.  |2 fast  |0 (OCoLC)fst01763571. 
700 1 |a Swiegers, Gerhard F.  |0 http://id.loc.gov/authorities/names/n2008011939  |1 http://isni.org/isni/0000000115661336. 
776 0 8 |i Print version:  |t Bioinspiration and biomimicry in chemistry.  |d Hoboken, N.J. : Wiley, ©2012  |z 9780470566671  |w (DLC) 2011049801. 
856 4 0 |u https://colorado.idm.oclc.org/login?url=https://onlinelibrary.wiley.com/doi/book/10.1002/9781118310083  |z Full Text (via Wiley) 
880 0 0 |6 505-01/(S  |g Machine generated contents note:  |g 1.  |t Introduction: The Concept of Biomimicry and Bioinspiration in Chemistry /  |r Gerhard F. Swiegers --  |g 1.1.  |t What is Biomimicry and Bioinspiration--  |g 1.2.  |t Why Seek Inspiration from, or Replicate Biology--  |g 1.2.1.  |t Biomimicry and Bioinspiration as a Means of Learning from Nature and Reverse-Engineering from Nature --  |g 1.2.2.  |t Biomimicry and Bioinspiration as a Test of Our Understanding of Nature --  |g 1.2.3.  |t Going Beyond Biomimicry and Bioinspiration --  |g 1.3.  |t Other Monikers: Bioutilization, Bioextraction, Bioderivation, and Bionics --  |g 1.4.  |t Biomimicry and Sustainability --  |g 1.5.  |t Biomimicry and Nanostructure --  |g 1.6.  |t Bioinspiration and Structural Hierarchies --  |g 1.7.  |t Bioinspiration and Self-Assembly --  |g 1.8.  |t Bioinspiration and Function --  |g 1.9.  |t Future Perspectives: Drawing Inspiration from the Complex System that is Nature --  |t References --  |g 2.  |t Bioinspired Self-Assembly I: Self-Assembled Structures /  |r Jack K. Clegg --  |g 2.1.  |t Introduction --  |g 2.2.  |t Molecular Clefts, Capsules, and Cages --  |g 2.2.1.  |t Organic Cage Systems --  |g 2.2.2.  |t Metallosupramolecular Cage Systems --  |g 2.3.  |t Enzyme Mimics and Models: The Example of Carbonic Anhydrase --  |g 2.4.  |t Self-Assembled Liposome-Like Systems --  |g 2.5.  |t Ion Channel Mimics --  |g 2.6.  |t Base-Pairing Structures --  |g 2.7.  |t DNA-RNA Structures --  |g 2.8.  |t Bioinspired Frameworks --  |g 2.9.  |t Conclusion --  |t References --  |g 3.  |t Bioinspired Self-Assembly II: Principles of Cooperativity in Bioinspired Self-Assembling Systems /  |r Luca Schiaffino --  |g 3.1.  |t Introduction --  |g 3.2.  |t Statistical Factors in Self-Assembly --  |g 3.3.  |t Allosteric Cooperativity --  |g 3.4.  |t Effective Molarity --  |g 3.5.  |t Chelate Cooperativity --  |g 3.6.  |t Interannular Cooperativity --  |g 3.7.  |t Stability of an Assembly --  |g 3.8.  |t Conclusion --  |t References --  |g 4.  |t Bioinspired Molecular Machines /  |r Amar H. Flood --  |g 4.1.  |t Introduction --  |g 4.1.1.  |t Inspirational Antecedents: Biology, Engineering, and Chemistry --  |g 4.1.2.  |t Chemical Integration --  |g 4.1.3.  |t Chapter Overview --  |g 4.2.  |t Mechanical Effects in Biological Machines --  |g 4.2.1.  |t Skeletal Muscle's Structure and Function --  |g 4.2.2.  |t Kinesin --  |g 4.2.3.  |t F1-ATP Synthase --  |g 4.2.4.  |t Common Features of Biological Machines --  |g 4.2.5.  |t Variation in Biomotors --  |g 4.2.6.  |t Descriptions and Analogies of Molecular Machines --  |g 4.3.  |t Theoretical Considerations: Flashing Ratchets --  |g 4.4.  |t Sliding Machines --  |g 4.4.1.  |t Linear Machines: Rotaxanes --  |g 4.4.2.  |t Mechanistic Insights: Ex Situ and In Situ (Maxwell's Demon) --  |g 4.4.3.  |t Bioinspiration in Rotaxanes --  |g 4.4.4.  |t Molecular Muscles as Length Changes --  |g 4.5.  |t Rotary Motors --  |g 4.5.1.  |t Interlocked Rotary Machines: Catenanes --  |g 4.5.2.  |t Unimolecular Rotating Machines --  |g 4.6.  |t Moving Larger Scale Objects --  |g 4.7.  |t Walking Machines --  |g 4.8.  |t Ingenious Machines --  |g 4.8.1.  |t Molecular Machines Inspired by Macroscopic Ones: Scissors and Elevators --  |g 4.8.2.  |t Artificial Motility at the Nanoscale --  |g 4.8.3.  |t Moving Molecules Across Surfaces --  |g 4.9.  |t Using Synthetic Bioinspired Machines in Biology --  |g 4.10.  |t Perspective --  |g 4.10.1.  |t Lessons and Departures from Biological Molecular Machines --  |g 4.10.2.  |t Next Steps in Bioinspired Molecular Machinery --  |g 4.11.  |t Conclusion --  |t References --  |g 5.  |t Bioinspired Materials Chemistry I: Organic-Inorganic Nanocomposites /  |r Katsuhiko Ariga --  |g 5.1.  |t Introduction --  |g 5.2.  |t Silicate-Based Bionanocomposites as Bioinspired Systems --  |g 5.3.  |t Bionanocomposite Foams --  |g 5.4.  |t Biomimetic Membranes --  |g 5.4.1.  |t Phospholipid-Clay Membranes --  |g 5.4.2.  |t Polysaccharide-Clay Bionanocomposites as Support for Viruses --  |g 5.5.  |t Hierarchically Layered Composites --  |g 5.5.1.  |t Layer-by-Layer Assembly of Composite-Cell Model --  |g 5.5.2.  |t Hierarchically Organized Nanocomposites for Sensor and Drug Delivery --  |g 5.6.  |t Conclusion --  |t References --  |g 6.  |t Bioinspired Materials Chemistry II: Biomineralization as Inspiration for Materials Chemistry /  |r Nico A.J.M. Sommerdijk --  |g 6.1.  |t Inspiration from Nature --  |g 6.2.  |t Learning from Nature --  |g 6.3.  |t Applying Lessons from Nature: Synthesis of Biomimetic and Bioinspired Materials --  |g 6.3.1.  |t Biomimetic Bone Materials --  |g 6.3.2.  |t Semiconductors, Nanoparticles, and Nanowires --  |g 6.3.3.  |t Biomimetic Strategies for Silica-Based Materials --  |g 6.4.  |t Conclusion --  |t References --  |g 7.  |t Bioinspired Catalysis /  |r Pawel Wagner --  |g 7.1.  |t Introduction --  |g 7.2.  |t General Description of the Operation of Catalysts --  |g 7.3.  |t Brief History of Our Understanding of the Operation of Enzymes --  |g 7.3.1.  |t Early Proposals: Lock-and-Key Theory, Strain Theory, and Induced Fit Theory --  |g 7.3.2.  |t Critical Role of Molecular Recognition in Enzymatic Catalysis: Pauling's Concept of Transition State Complementarity --  |g 7.3.3.  |t Critical Role of Approach Trajectories in Enzymatic Catalysis: Orbital Steering, Near Attack Conformers, the Proximity Effect, and Entropy Traps --  |g 7.3.4.  |t Critical Role of Conformational Motion in Enzymatic Catalysis: Coupled Protein Motions --  |g 7.3.5.  |t Enzymes as Molecular Machines: Dynamic Mechanical Devices and the Entatic State --  |g 7.3.6.  |t Fundamental Origin of Machine-like Actions: Mechanical Catalysis --  |g 7.4.  |t Representative Studies of Bioinspired/Biomimetic Catalysts --  |g 7.4.1.  |t Important General Characteristics of Enzymes as a Class of Catalyst --  |g 7.4.2.  |t Bioinspired/Biomimetic Catalysts that Illustrate the Critical Importance of Reactant Approach Trajectories --  |g 7.4.3.  |t Bioinspired/Biomimetic Catalysts that Demonstrate the Importance and Limitations of Molecular Recognition --  |g 7.4.4.  |t Bioinspired/Biomimetic Catalysts that Operate Like a Mechanical Device --  |g 7.5.  |t Relationship Between Enzymatic Catalysis and Nonbiological Homogeneous and Heterogeneous Catalysis --  |g 7.6.  |t Selected High-Performance NonBiological Catalysts that Exploit Nature's Catalytic Principles --  |g 7.6.1.  |t Adapting Model Species of Enzymes to Facilitate Machine-like Catalysis --  |g 7.6.2.  |t Statistical Proximity Catalysts --  |g 7.7.  |t Conclusion: The Prospects for Harnessing Nature's Catalytic Principles --  |t References --  |g 8.  |t Biomimetic Amphiphiles and Vesicles /  |r Bart Jan Ravoo --  |g 8.1.  |t Introduction --  |g 8.2.  |t Synthetic Amphiphiles as Building Blocks for Biomimetic Vesicles --  |g 8.3.  |t Vesicle Fusion Induced by Molecular Recognition --  |g 8.4.  |t Stimuli-Responsive Shape Control of Vesicles --  |g 8.5.  |t Transmembrane Signaling and Chemical Nanoreactors --  |g 8.6.  |t Toward Higher Complexity: Vesicles with Subcompartments --  |g 8.7.  |t Conclusion --  |t References --  |g 9.  |t Bioinspired Surfaces I: Gecko-Foot Mimetic Adhesion /  |r Liming Dai --  |g 9.1.  |t Hierarchical Structure of Gecko Feet --  |g 9.2.  |t Origin of Adhesion in Gecko Setae --  |g 9.3.  |t Structural Requirements for Synthetic Dry Adhesives --  |g 9.4.  |t Fabrication of Synthetic Dry Adhesives --  |g 9.4.1.  |t Polymer-Based Dry Adhesives --  |g 9.4.2.  |t Carbon-Nanotube-Based Dry Adhesives --  |g 9.5.  |t Outlook --  |t References --  |g 10.  |t Bioinspired Surfaces II: Bioinspired Photonic Materials /  |r Zhong-Ze Gu --  |g 10.1.  |t Structural Color in Nature: From Phenomena to Origin --  |g 10.2.  |t Bioinspired Photonic Materials --  |g 10.2.1.  |t Fabrication of Photonic Materials --  |g 10.2.2.  |t Design and Application of Photonic Materials --  |g 10.3.  |t Conclusion and Outlook --  |t References --  |g 11.  |t Biomimetic Principles in Macromolecular Science /  |r Bhanuprathap Pulamagatta --  |g 11.1.  |t Introduction --  |g 11.2.  |t Polymer Synthesis Versus Biopolymer Synthesis --  |g 11.2.1.  |t Features of Polymer Synthesis --  |g 11.2.2.  |t "Living" Chain Growth --  |g 11.2.3.  |t Aspects of Chain Length Distribution in Synthetic Polymers: Sequence Specificity and Templating --  |g 11.3.  |t Biomimetic Structural Features in Synthetic Polymers --  |g 11.3.1.  |t Helically Organized Polymers --  |g 11.3.2.  |t β-Sheets --  |g 11.3.3.  |t Supramolecular Polymers --  |g 11.3.4.  |t Self-Assembly of Block Copolymers --  |g 11.4.  |t Movement in Polymers --  |g 11.4.1.  |t Polymer Gels and Networks as Chemical Motors --  |g 11.4.2.  |t Polymer Brushes and Lubrication --  |g 11.4.3.  |t Shape-Memory Polymers --  |g 11.5.  |t Antibody-Like Binding and Enzyme-Like Catalysis in Polymeric Networks --  |g 11.6.  |t Self-Healing Polymers --  |t References --  |g 12.  |t Biomimetic Cavities and Bioinspired Receptors /  |r Olivia Reinaud --  |g 12.1.  |t Introduction --  |g 12.2.  |t Mimics of the Michaelis-Menten Complexes of Zinc(II) Enzymes with Polyimidazolyl Calixarene-Based Ligands --  |g 12.2.1.  |t Bis-aqua Zn(II) Complex Modeling the Active Site of Carbonic Anhydrase --  |g 12.2.2.  |t Structural Key Features of the Zn(II) Funnel Complexes --  |g 12.2.3.  |t Hosting Properties of the. 
880 0 0 |t Zn(II) Funnel Complexes: Highly Selective Receptors for Neutral Molecules --  |g 12.2.4.  |t Induced Fit: Recognition Processes Benefit from Flexibility --  |g 12.2.5.  |t Multipoint Recognition --  |g 12.2.6.  |t Implementation of an Acid-Base Switch for Guest Binding --  |g 12.3.  |t Combining a Hydrophobic Cavity and A Tren-Based Unit: Design of Tunable, Versatile, but Highly Selective Receptors --  |g 12.3.1.  |t Tren-Based Calix[6]arene Receptors --  |g 12.3.2.  |t Versatility of a Polyamine Site --  |g 12.3.3.  |t Polyamido and Polyureido Sites for Synergistic Binding of Dipolar Molecules and Anions --  |g 12.3.4.  |t Acid-Base Controllable Receptors --  |g 12.4.  |t Self-Assembled Cavities --  |g 12.4.1.  |t Receptors Decorated with a Triscationic or a Trisanionic Binding Site --  |g 12.4.2.  |t Receptors Capped Through Assembly with a Tripodal Subunit --  |g 12.4.3.  |t Heteroditopic Self-Assembled Receptors with Allosteric Response --  |g 12.4.4.  |t Interlocked Self-Assembled Receptors --  |g 12.5.  |t Conclusion --  |t References --  |g 13.  |t Bioinspired Dendritic Light-Harvesting Systems /  |r Sankaran Thayumanavan --  |g 13.1.  |t Introduction --  |g 13.2.  |t Dendrimer Architectures --  |g 13.2.1.  |t Dendrimer as a Chromophore --  |g 13.2.2.  |t Dendrimer as a Scaffold --  |g 13.3.  |t Electronic Processes in Light-Harvesting Dendrimers --  |g 13.3.1.  |t Energy Transfer in Dendrimers. 
907 |a .b122140795  |b 06-06-22  |c 05-19-22 
998 |a web  |b 05-31-22  |c b  |d b   |e -  |f eng  |g nju  |h 0  |i 1 
907 |a .b122140795  |b 06-01-22  |c 05-19-22 
944 |a MARS - RDA ENRICHED 
915 |a - 
956 |a Wiley Online Library eBooks 
956 |b Wiley Online Library: Complete oBooks 
999 f f |i 134e74c3-d5b0-52b9-9cee-34b33feff0f5  |s e4c69121-dbe9-5438-a6fe-c900ffa94a30 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e QP517.B56  |h Library of Congress classification  |i web  |n 1