Statistical challenges in assessing and fostering the reproducibility of scientific results : summary of a workshop / Michelle Schwalbe, rapporteur ; Committee on Applied and Theoretical Statistics, Board on Mathematical Sciences and Their Applications, Division on Engineering and Physical Sciences, National Academies of Sciences, Engineering, Medicine.

Questions about the reproducibility of scientific research have been raised in numerous settings and have gained visibility through several high-profile journal and popular press articles. Quantitative issues contributing to reproducibility challenges have been considered (including improper data me...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via ProQuest)
Main Author: Schwalbe, Michelle (rapporteur.)
Corporate Author: Statistical Challenges in Assessing and Fostering the Reproducibility of Scientific Results (Workshop)
Format: Conference Proceeding eBook
Language:English
Published: Washington, DC : The National Academies Press, [2016]
Subjects:

MARC

LEADER 00000cam a2200000 i 4500
001 b11880568
003 CoU
006 m o d
007 cr |||||||||||
008 160404s2016 dcua obt 100 0 eng
005 20230818004349.9
019 |a 961459091  |a 1021256615 
020 |a 9780309392020 
020 |a 0309392020 
020 |a 9780309392037 
020 |a 0309392039 
035 |a (OCoLC)ebqac942666190 
035 |a (OCoLC)942666190  |z (OCoLC)961459091  |z (OCoLC)1021256615 
037 |a ebqac4455152 
040 |a NLM  |b eng  |e rda  |e pn  |c NLM  |d SCB  |d CUS  |d N$T  |d YDXCP  |d OCLCF  |d OSU  |d EBLCP  |d OCLCO  |d DEBBG  |d IDB  |d MERUC  |d OCLCQ  |d OCLCO  |d NLM  |d OCLCO  |d OCLCA  |d SNK  |d DKU  |d AUW  |d IGB  |d D6H  |d VTS  |d EZ9  |d AGLDB  |d OCLCQ  |d OCLCO  |d G3B  |d VT2  |d OCLCA  |d S8J  |d S9I  |d STF  |d OCLCQ  |d UKBTH  |d OCLCQ  |d OCLCO  |d UKAHL  |d OCLCO  |d OCLCA 
042 |a pcc 
049 |a GWRE 
050 4 |a Q180.55.S7 
100 1 |a Schwalbe, Michelle,  |e rapporteur. 
245 1 0 |a Statistical challenges in assessing and fostering the reproducibility of scientific results :  |b summary of a workshop /  |c Michelle Schwalbe, rapporteur ; Committee on Applied and Theoretical Statistics, Board on Mathematical Sciences and Their Applications, Division on Engineering and Physical Sciences, National Academies of Sciences, Engineering, Medicine. 
264 1 |a Washington, DC :  |b The National Academies Press,  |c [2016] 
300 |a 1 online resource (1 PDF file (xii, 119 pages)) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
504 |a Includes bibliographical references. 
505 0 |a Pages:1 to 25; Pages:26 to 50; Pages:51 to 75; Pages:76 to 100; Pages:101 to 125; Pages:126 to 133. 
520 3 |a Questions about the reproducibility of scientific research have been raised in numerous settings and have gained visibility through several high-profile journal and popular press articles. Quantitative issues contributing to reproducibility challenges have been considered (including improper data measurement and analysis, inadequate statistical expertise, and incomplete data, among others), but there is no clear consensus on how best to approach or to minimize these problems. A lack of reproducibility of scientific results has created some distrust in scientific findings among the general public, scientists, funding agencies, and industries. While studies fail for a variety of reasons, many factors contribute to the lack of perfect reproducibility, including insufficient training in experimental design, misaligned incentives for publication and the implications for university tenure, intentional manipulation, poor data management and analysis, and inadequate instances of statistical inference. The workshop summarized in this report was designed not to address the social and experimental challenges but instead to focus on the latter issues of improper data management and analysis, inadequate statistical expertise, incomplete data, and difficulties applying sound statistic inference to the available data. Many efforts have emerged over recent years to draw attention to and improve reproducibility of scientific work. This report uniquely focuses on the statistical perspective of three issues: the extent of reproducibility, the causes of reproducibility failures, and the potential remedies for these failures. 
588 0 |a Online resource; title from PDF title page (viewed July 28, 2016) 
536 |a This workshop was supported by Grant No. DMS-1351163 between the National Academies of Sciences and the National Science Foundation. Any opinions, findings, or conclusions expressed in this publication do not necessarily reflect the views of any organization or agency that provided support for the project. 
650 0 |a Research  |x Statistical methods  |v Congresses. 
650 0 |a Research  |x Methodology  |v Congresses. 
650 7 |a Research  |x Methodology.  |2 fast  |0 (OCoLC)fst01095216. 
650 7 |a Research  |x Statistical methods.  |2 fast  |0 (OCoLC)fst01095242. 
655 7 |a Conference papers and proceedings.  |2 fast  |0 (OCoLC)fst01423772. 
710 2 |a National Academies of Sciences, Engineering, and Medicine (U.S.).  |b Committee on Applied and Theoretical Statistics,  |e issuing body. 
711 2 |a Statistical Challenges in Assessing and Fostering the Reproducibility of Scientific Results (Workshop)  |d (2015 :  |c Washington, D.C.) 
776 0 8 |i Erscheint auch als:  |n Druck-Ausgabe  |a Statistics, Committee on Applied and Theoretical. Statistical Challenges in Assessing and Fostering the Reproducibility of Scientific Results .  |t Summary of a Workshop. 
856 4 0 |u https://ebookcentral.proquest.com/lib/ucb/detail.action?docID=4455152  |z Full Text (via ProQuest) 
907 |a .b11880568x  |b 06-28-21  |c 06-28-21 
915 |a - 
998 |a web  |b  - -   |c f  |d b   |e z  |f eng  |g dcu  |h 0  |i 1 
956 |a Ebook Central Academic Complete 
956 |b Ebook Central Academic Complete 
999 f f |i 21252547-1519-53f3-b205-98f5ae3f7d38  |s d71b6e32-a23c-528e-84e2-01b11d1fdbcc 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e Q180.55.S7  |h Library of Congress classification  |i web  |n 1