Infrared-active phonon modes in single-crystal thorium dioxide and uranium dioxide [electronic resource]

The infrared-active phonon modes, in single-crystal samples of thorium dioxide (ThO<span class="equationTd inline-formula"><math display="inline" overflow="scroll" altimg="eq-00001.gif"> <msub> <mrow></mrow> <mn>2</mn>...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via OSTI)
Corporate Authors: United States. Department of Energy. Office of Basic Energy. Energy Frontier Research Centers (EFRC) (Researcher), Idaho National Laboratory
Format: Government Document Electronic eBook
Language:English
Published: Washington, D.C. : Oak Ridge, Tenn. : United States. Department of Energy. Office of Science ; Distributed by the Office of Scientific and Technical Information, U.S. Department of Energy, 2020.
Subjects:
Description
Summary:The infrared-active phonon modes, in single-crystal samples of thorium dioxide (ThO<span class="equationTd inline-formula"><math display="inline" overflow="scroll" altimg="eq-00001.gif"> <msub> <mrow></mrow> <mn>2</mn></msub></math></span><span class="formulaLabel"></span>) and uranium dioxide (UO<span class="equationTd inline-formula"><math display="inline" overflow="scroll" altimg="eq-00002.gif"> <msub> <mrow></mrow> <mn>2</mn></msub></math></span><span class="formulaLabel"></span>), were investigated using spectroscopic ellipsometry and compared with density functional theory. Both ThO<span class="equationTd inline-formula"><math display="inline" overflow="scroll" altimg="eq-00003.gif"> <msub> <mrow></mrow> <mn>2</mn></msub></math></span><span class="formulaLabel"></span> and UO<span class="equationTd inline-formula"><math display="inline" overflow="scroll" altimg="eq-00004.gif"> <msub> <mrow></mrow> <mn>2</mn></msub></math></span><span class="formulaLabel"></span> are found to have one infrared-active phonon mode pair [consisting of one transverse optic (TO) and one associated longitudinal optic (LO) mode], which is responsible for the dominant features in the ellipsometric data. Furthermore, at room temperature, our results for the mode pair?s resonant frequencies and broadening parameters are comparable with previous reflectance spectroscopy characterizations and density functional theory predictions. For ThO<span class="equationTd inline-formula"><math display="inline" overflow="scroll" altimg="eq-00005.gif"> <msub> <mrow></mrow> <mn>2</mn></msub></math></span><span class="formulaLabel"></span>, our ellipsometry and density function theory results both show that the LO mode broadening parameter is larger than the TO mode broadening. This signifies mode anharmonicity, which can be attributed to the intrinsic phonon?phonon interaction. In addition to the main mode pair, a broad low-amplitude impurity-like vibrational mode pair is detected within the reststrahlen band for both ThO<span class="equationTd inline-formula"><math display="inline" overflow="scroll" altimg="eq-00006.gif"> <msub> <mrow></mrow> <mn>2</mn></msub></math></span><span class="formulaLabel"></span> and UO<span class="equationTd inline-formula"><math display="inline" overflow="scroll" altimg="eq-00007.gif"> <msub> <mrow></mrow> <mn>2</mn></msub></math></span><span class="formulaLabel"></span>. Elevated temperature measurements were performed for ThO<span class="equationTd inline-formula"><math display="inline" overflow="scroll" altimg="eq-00008.gif"> <msub> <mrow></mrow> <mn>2</mn></msub></math></span><span class="formulaLabel"></span> in order to study the mechanisms by which the phonon parameters evolve with increased heat. The observed change in the TO resonant frequency is in excellent agreement with previous density functional calculations, which only consider volume expansion of the crystal lattice. This suggests that the temperature-dependent change in the TO frequency is primarily due to volume expansion. The change in the main mode pair?s broadening parameters is nearly linear within the temperature range of this study, which indicates the intrinsic anharmonic scattering (via cubic anharmonicities) as the main decay mechanism.
Item Description:Published through Scitech Connect.
03/23/2020.
"Journal ID: ISSN 0021-8979."
": US2206377."
Knight, Sean ; Korlacki, Rafa? ; Dugan, Christina ; Petrosky, James C. ; Mock, Alyssa ; Dowben, Peter A. ; Mann, J. Matthew ; Kimani, Martin M. ; Schubert, Mathias ;
US Air Force Office of Scientific Research (AFOSR)
US Department of Homeland Security (DHS), Domestic Nuclear Detection Office.
Physical Description:Size: Article No. 125103 : digital, PDF file.