Estimating Watershed Subsurface Permeability From Stream Discharge Data using Deep Neural Networks, Frontiers in Earth Science [electronic resource] : Dataset.

This data package contains watershed modeling inputs and outputs as well as deep neural networks training and testing results used in "Estimating Watershed Subsurface Permeability From Stream Discharge Data using Deep Neural Networks" (Cromwell et al., 2021). We train various deep neural n...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via OSTI)
Corporate Author: Environmental System Science Data Infrastructure for a Virtual Ecosystem
Format: Government Document Electronic eBook
Language:English
Published: Oak Ridge, Tenn. : Distributed by the Office of Scientific and Technical Information, U.S. Department of Energy, 2020.
Subjects:

MARC

LEADER 00000nam a22000003u 4500
001 b11747733
003 CoU
005 20220912040000.0
006 m o d f
007 cr |||||||||||
008 221019e20200101||| o| f0|||||eng|d
035 |a (TOE)ost1756193 
035 |a (TOE)1756193 
040 |a TOE  |c TOE 
049 |a GDWR 
072 1 |a 54  |2 edbsc 
086 0 |a E 1.99:1756193 
086 0 |a E 1.99:1756193 
245 0 0 |a Estimating Watershed Subsurface Permeability From Stream Discharge Data using Deep Neural Networks, Frontiers in Earth Science  |h [electronic resource] :  |b Dataset. 
260 |a Oak Ridge, Tenn. :  |b Distributed by the Office of Scientific and Technical Information, U.S. Department of Energy,  |c 2020. 
300 |a :  |b digital, PDF file. 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
500 |a Published through Scitech Connect. 
500 |a 01/01/2020. 
500 |a Cromwell, Erol ; Shuai, Pin ; Jiang, Peishi ; Coon, Ethan ; Painter, Scott ; Moulton, David ; Lin, Youzuo ; Chen, Xingyuan ;  
500 |a Environmental System Science Data Infrastructure for a Virtual Ecosystem (ESS-DIVE) (United States) 
500 |a ExaSheds. 
500 |a U.S. DOE > Office of Science > Biological and Environmental Research (BER) 
500 |a Environmental System Science Data Infrastructure for a Virtual Ecosystem. 
520 3 |a This data package contains watershed modeling inputs and outputs as well as deep neural networks training and testing results used in "Estimating Watershed Subsurface Permeability From Stream Discharge Data using Deep Neural Networks" (Cromwell et al., 2021). We train various deep neural network models with different architectures to predict subsurface permeability from stream discharge hydrograph at the watershed outlet. The training data are obtained from ensemble simulations of hydrographs corresponding to an permeability ensemble using a fully-distributed, integrated surface-subsurface hydrologic model. The trained model is then applied to estimate the permeability of the real watershed using its observed hydrograph at the outlet. Our study demonstrates that the permeabilities of the soil and geologic facies that make significant contributions to the outlet discharge can be more accurately estimated from the discharge data. Their estimations are also more robust with observation errors. Compared to the traditional ensemble smoother method, DNNs show stronger performance in capturing the nonlinear relationship between permeability and stream hydrograph to accurately estimate permeability. Our study sheds new light on the value of the emerging deep learning methods in assisting integrated watershed modeling by improving parameter estimation, which will eventually reduce the uncertainty in predictive watershed models. For detailed information regarding watershed model description and DNNs setup, please refer to Cromwell et al., 2021. The deep_learning.zip file contains the inputs and outputs for the different deep neural networks. The watershed_model.zip file contains the inputs and outputs for watershed simulation using ATS. The figures.zip file contains raw figures and their corresponding scripts. For a more detailed description, please see the README.md file within each compressed file. 
536 |b AC02-05CH11231. 
650 7 |a 54 environmental sciences  |2 local. 
650 7 |a Deep neural networks  |2 local. 
650 7 |a Watershed modeling  |2 local. 
650 7 |a Earth science > terrestrial hydrosphere > ground water  |2 local. 
650 7 |a Earth science > terrestrial hydrosphere > surface water  |2 local. 
650 7 |a Earth science > terrestrial hydrosphere > surface water > surface water processesmeasurements > dischargeflow > average flow  |2 local. 
650 7 |a Environmental sciences  |2 local. 
710 2 |a Environmental System Science Data Infrastructure for a Virtual Ecosystem.  |f res. 
710 1 |a United States.  |b Department of Energy.  |b Office of Scientific and Technical Information  |4 dst. 
856 4 0 |u https://www.osti.gov/servlets/purl/1756193  |z Full Text (via OSTI) 
907 |a .b117477333  |b 02-21-23  |c 03-03-21 
998 |a web  |b 12-08-22  |c f  |d m   |e p  |f eng  |g    |h 0  |i 2 
956 |a Information bridge 
999 f f |i fb191021-74ee-50f0-9020-fcada9ed8735  |s 6124a0d8-4d51-51ea-ab1e-02925b04c76b 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e E 1.99:1756193  |h Superintendent of Documents classification  |i web  |n 1