Evaluation of Repurposing Archetypal Preventive Radiological/Nuclear Detectors to the Consequence Management Mission [electronic resource]

In the first hours or days after an unplanned release of radioactive material to the environment, the radiation detection instruments most widely available to local first responders may be those currently fielded for interdiction missions. This study investigated how such preventative radiological /...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via OSTI)
Corporate Author: Brookhaven National Laboratory (Researcher)
Format: Government Document Electronic eBook
Language:English
Published: Upton, N.Y. : Oak Ridge, Tenn. : Brookhaven National Laboratory ; Distributed by the Office of Scientific and Technical Information, U.S. Department of Energy, 2018.
Subjects:
Description
Summary:In the first hours or days after an unplanned release of radioactive material to the environment, the radiation detection instruments most widely available to local first responders may be those currently fielded for interdiction missions. This study investigated how such preventative radiological / nuclear detection instruments could perform if repurposed to consequence management missions. A representative sample of three archetypes (body-worn, human carried, and other/large detection volume) encompassed six categories: personal radiation detector, extended range personal radiation detector, personal emergency radiation detector, radio-isotope identification device, human portable detector/backpack, and vehicle mounted large detection volume. Overall 19 models of equipment were included in the study. Laboratory evaluations were designed to assess the capabilities of the instruments in four consequence management missions: exposure rate, integrated exposure, radiation survey, and contamination screening. As applicable, the evaluations included measurement of exposure rate, integrated exposure, overrange response, and angular response. The results were compared to benchmarks from the American National Standards Institute ANSI N42.49A. The performance of the instruments for initial screening for contamination was assessed by an automated radioactive source moving past the detectors at various speeds and distances. The results demonstrate that if the equipment is used in accordance with the mission analysis and categories, and within the original equipment manufacturer specifications, it is possible to achieve sufficient accuracy to estimate and document doses to responders, plan entries into contaminated areas, detect contamination, and protect the public, until such time as outside resources arrive with sufficient numbers of standard health physics instruments and personnel dosimetry to replace the preventative radiological / nuclear detection instruments. Finally, this evaluation campaign was conducted to complement the National Council on Radiation Protection and Measurements Report-179 on Guidance for Emergency Response Dosimetry.
Item Description:Published through Scitech Connect.
07/25/2018.
"bnl-207820-2018-jaam"
"Journal ID: ISSN 0017-9078"
Musolino, Stephen V. ; Buddemeier, Brooke ; Finfrock, Charles ; Gomera, Jose ; Klemic, Gladys ; Moskowitz, Joseph ; Roberts, Thomas ; Schaefer, Lance ;
USDOE.
Department of Homeland Security (DHS) (United States)
Physical Description:Size: p. 4-17 : digital, PDF file.