Moufang sets and structurable division algebras / Lien Boelaert, Tom De Medts, Anastasia Stavrova.

"A Moufang set is essentially a doubly transitive permutation group such that each point stabilizer contains a normal subgroup which is regular on the remaining vertices; these regular normal subgroups are called the root groups, and they are assumed to be conjugate and to generate the whole gr...

Full description

Saved in:
Bibliographic Details
Online Access: Online Access
Main Author: Boelaert, Lien (Author)
Other Authors: Medts, Tom de, 1980-, Stavrova, Anastasia
Format: eBook
Language:English
Published: Providence, RI : American Mathematical Society, 2019.
Series:Memoirs of the American Mathematical Society ; no. 1245.
Subjects:

MARC

LEADER 00000nam a2200000Ki 4500
001 b10701847
003 CoU
005 20190615075736.0
006 m o d
007 cr un|||||||||
008 190615t20192019riua o 000 0 eng d
020 |a 9781470452452 (online) 
020 |a 1470452456 (online) 
020 |z 9781470435547 (print) 
035 |a (OCoLC)ocn1104727673 
035 |a (OCoLC)1104727673 
040 |a COD  |b eng  |e rda  |e pn  |c COD 
049 |a CODA 
100 1 |a Boelaert, Lien,  |e author.  |0 http://id.loc.gov/authorities/names/n2019032927. 
245 1 0 |a Moufang sets and structurable division algebras /  |c Lien Boelaert, Tom De Medts, Anastasia Stavrova. 
264 1 |a Providence, RI :  |b American Mathematical Society,  |c 2019. 
264 4 |c ©2019. 
300 |a 1 online resource (v, 90 pages) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
490 1 |a Memoirs of the American Mathematical Society,  |x 1947-6221 ;  |v number 1245. 
500 |a "May 2019 - Volume 259 - Number 1245 (second of 8 numbers)" 
500 |a "Keywords: Structurable algebra, Jordan algebra, Moufang set, root group, simple algebraic group, 5-graded Lie algebra" 
504 |a Includes bibliographic references (pages 87-90) 
520 3 |a "A Moufang set is essentially a doubly transitive permutation group such that each point stabilizer contains a normal subgroup which is regular on the remaining vertices; these regular normal subgroups are called the root groups, and they are assumed to be conjugate and to generate the whole group.It has been known for some time that every Jordan division algebra gives rise to a Moufang set with abelian root groups. We extend this result by showing that every structurable division algebra gives rise to a Moufang set, and conversely, we show that every Moufang set arising from a simple linear algebraic group of relative rank one over an arbitrary field k of characteristic different from 2 and 3 arises from a structurable division algebra. We also obtain explicit formulas for the root groups, the tau-map and the Hua maps of these Moufang sets. This is particularly useful for the Moufang sets arising from exceptional linear algebraic groups."--Abstract. 
588 |a Description based on print version record. 
650 0 |a Algebra, Abstract.  |0 http://id.loc.gov/authorities/subjects/sh85003428. 
650 0 |a Jordan algebras.  |0 http://id.loc.gov/authorities/subjects/sh85070700. 
650 0 |a Lie algebras.  |0 http://id.loc.gov/authorities/subjects/sh85076782. 
650 0 |a Root systems (Algebra)  |0 http://id.loc.gov/authorities/subjects/sh2002004426. 
700 1 |a Medts, Tom de,  |d 1980-  |0 http://id.loc.gov/authorities/names/n2004014269  |1 http://isni.org/isni/0000000114401735. 
700 1 |a Stavrova, Anastasia.  |0 http://id.loc.gov/authorities/names/n2019032929. 
776 0 8 |i Print version:  |a Boelaert, Lien.  |t Moufang sets and structurable division algebras.  |d Providence, RI USA American Mathematical Society April 10, 2019  |z 1470435543  |w (OCoLC)1090177106. 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 1245.  |0 http://id.loc.gov/authorities/names/n83703151. 
856 4 0 |z Online Access  |u http://www.ams.org/books/memo/1245/memo1245.pdf 
907 |a .b107018470  |b 03-08-23  |c 06-15-19 
998 |a web  |b 06-15-19  |c o  |d b   |e -  |f eng  |g riu  |h 0  |i 1 
907 |a .b107018470  |b 10-11-19  |c 06-15-19 
944 |a MARS - RDA ENRICHED 
907 |a .b107018470  |b 06-15-19  |c 06-15-19 
946 |a cah 
999 f f |i a34d01e3-b6ef-5af1-9aba-9520c220fe90  |s c4ba73eb-19f5-5835-bf8c-efdd337a4892 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |i web  |n 1