Approximation and complexity in numerical optimization : continuous and discrete problems / edited by Panos M. Pardalos, Center for Applied Optimization, Department of Industrial and Systems Engineering, University of Florida, U.S.A.

There has been much recent progress in approximation algorithms for nonconvex continuous and discrete problems, from both a theoretical and a practical perspective. In discrete (or combinatorial) optimization many approaches have been developed recently that link the discrete universe to the continu...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via Springer)
Other Authors: Pardalos, P. M. (Panos M.), 1954- (Editor)
Format: eBook
Language:English
Published: Dordrecht : Springer Science+Business Media, [2000]
Series:Nonconvex optimization and its applications ; v. 42.
Subjects:

MARC

LEADER 00000cam a2200000xi 4500
001 b10010520
006 m o d
007 cr |||||||||||
008 131121t20002000ne ob 000 0 eng d
005 20240418150340.9
020 |a 9781475731453  |q (electronic bk.) 
020 |a 1475731450  |q (electronic bk.) 
020 |z 9781441948298 
020 |z 1441948295 
024 7 |a 10.1007/978-1-4757-3145-3 
035 |a (OCoLC)spr863638125 
035 |a (OCoLC)863638125 
037 |a spr978-1-4757-3145-3 
040 |a GW5XE  |b eng  |e rda  |e pn  |c GW5XE  |d OCLCQ  |d OCLCO  |d OCLCF  |d OCLCQ  |d OCLCO  |d CUS  |d UAB  |d OCLCQ  |d U3W  |d AU@  |d TKN  |d LEAUB  |d OCLCQ  |d OCLCA  |d OCLCQ 
049 |a GWRE 
050 4 |a QA402.5  |b .A66 2000eb 
245 0 0 |a Approximation and complexity in numerical optimization :  |b continuous and discrete problems /  |c edited by Panos M. Pardalos, Center for Applied Optimization, Department of Industrial and Systems Engineering, University of Florida, U.S.A. 
264 1 |a Dordrecht :  |b Springer Science+Business Media,  |c [2000] 
264 4 |c ©2000. 
300 |a 1 online resource (xvii, 581 pages) 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
490 1 |a Nonconvex optimization and its applications ;  |v volume 42. 
504 |a Includes bibliographical references. 
505 0 |a Navigating Graph Surfaces -- The Steiner Ratio of Lp-planes -- Hamiltonian Cycle Problem via Markov Chains and Min-type Approaches -- Solving Large Scale Uncapacitated Facility Location Problems -- A Branch -- and -- Bound Procedure for the Largest Clique in a Graph -- A New "Annealed" Heuristic for the Maximum Clique Problem -- Inapproximability of some Geometric and Quadratic Optimization Problems -- Convergence Rate of the P-Algorithm for Optimization of Continious Functions -- Application of Semidefinite Programming to Circuit Partitioning -- Combinatorial Problems Arising in Deregulated Electrical Power Industry: Survey and Future Directions -- On Approximating a Scheduling Problem -- Models and Solution for On-Demand Data Delivery Problems -- Complexity and Experimental Evaluation of Primal-Dual Shortest Path Tree Algorithms -- Machine Partitioning and Scheduling under Fault-Tolerance Constraints -- Finding Optimal Boolean Classifiers -- Tighter Bounds on the Performance of First Fit Bin Packing -- Block Exchange in Graph Partitioning -- On the Efficient Approximability of "HARD" Problems: A Survey -- Exceptional Family of Elements, Feasibility, Solvability and Continuous Paths of?- Solutions for Nonlinear Complementarity Problems -- Linear Time Approximation Schemes for Shop Scheduling Problems -- On Complexity and Optimization in Emergent Computation -- Beyond Interval Systems: What Is Feasible and What Is Algorithmically Solvable? -- A Lagrangian Relaxation of the Capacitated Multi-Item Lot Sizing Problem Solved with an Interior Point Cutting Plane Algorithm -- An Approximate Algorithm For a Weapon Target Assignment Stochastic Program -- Continuous-based Heuristics for Graph and Tree Isomorphisms, with Application to Computer Vision -- Geometric Optimization Problems for Steiner Minimal Trees in E3 -- Optimization of a Simplified Fleet Assignment Problem with Metaheuristics: Simulated Annealing and GRASP -- Towards Implementations of Successive Convex Relaxation Methods for Nonconvex Quadratic Optimization Problems -- Piecewise Concavity and Discrete Approaches to Continuous Minimax Problems -- The MCCNF Problem with a Fixed Number of Nonlinear Arc Costs: Complexity and Approximation -- A New Parametrization Algorithm for the Linear Complementarity Problem -- Obtaining an Approximate Solution for Quadratic Maximization Problems. 
520 |a There has been much recent progress in approximation algorithms for nonconvex continuous and discrete problems, from both a theoretical and a practical perspective. In discrete (or combinatorial) optimization many approaches have been developed recently that link the discrete universe to the continuous universe through geometric, analytic, and algebraic techniques. Such techniques include global optimization formulations, semidefinite programming, and spectral theory. As a result new approximate algorithms have been discovered and many new computational approaches have been developed. Similarly, for many continuous nonconvex optimization problems, new approximate algorithms have been developed based on semidefinite programming and new randomization techniques. On the other hand, computational complexity, originating from the interactions between computer science and numerical optimization, is one of the major theories that have revolutionized the approach to solving optimization problems and to analyzing their intrinsic difficulty. The main focus of complexity is the study of whether existing algorithms are efficient for the solution of problems, and which problems are likely to be tractable. The quest for developing efficient algorithms leads also to elegant general approaches for solving optimization problems, and reveals surprising connections among problems and their solutions. The two themes of approximation and complexity pervade this book. Audience: Faculty, graduate students, and researchers in mathematical programming, computer sciences and engineering. 
588 0 |a Print version record. 
650 0 |a Mathematical optimization.  |0 http://id.loc.gov/authorities/subjects/sh85082127. 
650 0 |a Approximation theory.  |0 http://id.loc.gov/authorities/subjects/sh85006190. 
650 0 |a Computational complexity.  |0 http://id.loc.gov/authorities/subjects/sh85029473. 
650 7 |a Approximation theory.  |2 fast  |0 (OCoLC)fst00811829. 
650 7 |a Computational complexity.  |2 fast  |0 (OCoLC)fst00871991. 
650 7 |a Mathematical optimization.  |2 fast  |0 (OCoLC)fst01012099. 
700 1 |a Pardalos, P. M.  |q (Panos M.),  |d 1954-  |e editor.  |0 http://id.loc.gov/authorities/names/n87923409  |1 http://isni.org/isni/0000000122840180. 
776 0 8 |i Print version:  |t Approximation and complexity in numerical optimization  |z 9781441948298  |w (OCoLC)43648692. 
830 0 |a Nonconvex optimization and its applications ;  |v v. 42.  |0 http://id.loc.gov/authorities/names/n94023244. 
856 4 0 |u https://colorado.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-1-4757-3145-3  |z Full Text (via Springer) 
907 |a .b100105208  |b 12-01-21  |c 01-30-18 
998 |a web  |b 11-30-21  |c b  |d b   |e -  |f eng  |g ne   |h 0  |i 1 
907 |a .b100105208  |b 11-30-21  |c 01-30-18 
944 |a MARS - RDA ENRICHED 
915 |a - 
956 |a Springer e-books 
956 |b Springer Nature - Springer Book Archive - Springer Mathematics 
999 f f |i 412b4558-f669-5677-a84b-c1c0e0f6c21c  |s 1a8eed2f-50c2-5868-85f1-67e02b80bb4e 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e QA402.5 .A66 2000eb  |h Library of Congress classification  |i Ebooks, Prospector  |n 1