Call Number (LC) Title Results
QA351 .S97 1969 Special functions and wave propagation : a collection of papers presented at the Symposia on Special Functions and Wave Propagation sponsored by the Air Force Office of Scientific Research at the 1969 SIAM national meeting held in Washington, D.C., June 9-12, 1969 / 1
QA351 .T28 Special functions : a group theoretic approach / 1
QA351 .T44 2005 Theory and applications of special functions : a volume dedicated to Mizan Rahman / 1
QA351 .T44 2005eb Theory and applications of special functions a volume dedicated to Mizan Rahman / 1
QA351 .T49 The theory of the Riemann zeta-function. 1
QA351 .T5 The zeta-function of Riemann / 1
QA351 .T5 1964 The zeta-function of Riemann / 1
QA351 .V35 2004 Airy functions and applications to physics / 1
QA351 .V473 Special functions and the theory of group representations / 1
QA351 .V57 2007eb Vistas of special functions / 1
QA351 .V676 2010 Zeta functions over zeros of zeta functions 1
QA351 .W3 Conjugate functions for engineers : a simple exposition of the Schwarz-Christoffel transformation applied to the solution of problems involving two-dimensional fields of force and flux / 1
QA351 .W3 1964 The Schwarz-Christoffel transformation and its applications : a simple exposition / 1
QA351 .Y85 1993 Shintani Zeta Functions /
Shintani zeta functions /
2
QA351 .Z25 1981 Zetafunktionen und quadratische Körper : eine Eingührung in die höhere Zahlentheorie / 1
QA351 .Z47 1992 Zeta functions in geometry / 1
QA351 .Z94 2005 Zeta functions, topology, and quantum physics / 2
QA351.048 1997 Asymptotics and Special Functions. 1
QA353.A9 Complex manifolds and hyperbolic geometry : II Iberoamerican Congress on Geometry, January 4-9, 2001, CIMAT, Guanajuato, Mexico /
Automorphic forms and even unimodular lattices : Kneser neighbors of Niemeier /
Families of automorphic forms and the trace formula /
3
QA353.A9 A38 2016 Advances in the theory of automorphic forms and their L-functions : workshop in honor of James Cogdell's 60th birthday, October 16-25, 2013, Erwin Schrödinger Institute, University of Vienna, Vienna, Austria / 1